Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity

Samuel H. Taylor¹ and Stephen P. Long¹,²,³

¹Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire LA1 4YQ, UK
²Department of Crop Sciences, and ³Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA

Wheat is the second most important direct source of food calories in the world. After considerable improvement during the Green Revolution, increase in genetic yield potential appears to have stalled. Improvement of photosynthetic efficiency now appears a major opportunity in addressing the sustainable yield increases needed to meet future food demand. Effort, however, has focused on increasing efficiency under steady-state conditions. In the field, the light environment at the level of individual leaves is constantly changing. The speed of adjustment of photosynthetic efficiency can have a profound effect on crop carbon gain and yield. Flag leaves of wheat are the major photosynthetic organs supplying the grain of wheat, and will be intermittently shaded throughout a typical day. Here, the speed of adjustment to a shade to sun transition in these leaves was analysed. On transfer to sun conditions, the leaf required about 15 min to regain maximum photosynthetic efficiency. In vivo analysis based on the responses of leaf CO₂ assimilation (A) to intercellular CO₂ concentration (cᵢ) implied that the major limitation throughout this induction was activation of the primary carboxylase of C₃ photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This was followed in importance by stomata, which accounted for about 20% of the limitation. Except during the first few seconds, photosynthetic electron transport and regeneration of the CO₂ acceptor molecule, ribulose-1,5-bisphosphate (RubP), did not affect the speed of induction. The measured kinetics of Rubisco activation in the sun and de-activation in the shade were predicted from the measurements. These were combined with a canopy ray tracing model that predicted intermittent shading of flag leaves over the course of a June day. This indicated that the slow adjustment in shade to sun transitions could cost 21% of potential assimilation.

1. Introduction

Leaves of crops in the field experience frequent fluctuations in light, moving from shade to full sunlight, and vice versa, as clouds obscure the sun or as leaves go into the shade of other leaves, stems and floral structures. Recently, it was shown that increasing the rate at which leaves could re-adjust photosynthetic efficiency on transfer to shade increased productivity of a tobacco crop in replicated field trials by 14–20% [1]. This was shown to result from a decrease in the time required for non-photochemical quenching to relax and the efficiency of leaf photosynthetic CO₂ uptake (A), in limiting light, to recover. Equally, there is a lag in achieving maximum efficiency when leaves are transferred in the opposite direction from shade to sun. The increase in A that occurs following the transition has been termed photosynthetic induction [2]. Although many factors could govern the speed of induction, it has been shown to correlate with, and modelled...
to correspond to, Rubisco activation in, for example, soya bean and tobacco [3,4]. More recently, over-expression of Rca, the gene coding for Rubisco activase (Rca), in rice resulted in a slightly increased speed of induction at 25°C [5]. In vivo, the steady-state response of leaf CO₂ uptake (A) to intercellular CO₂ concentration (c_i) has proved a highly valuable means to partition limitations, including apparent Rubisco activity (V_{c,max}). Recently, this concept has been extended by inducing photosynthesis on the same leaf in a range of CO₂ concentrations. This allowed the production of dynamic A/c_i responses to infer limitations at different stages of induction in soya bean. On transfer of leaves from a shade light level of 100 μmol m⁻² s⁻¹ to a full sun level of 2000 μmol m⁻² s⁻¹, 10–20 min were required for leaves to regain full efficiency. The dynamic A/c_i analysis over this period inferred that the slowest responding determinant of photosynthetic rate was Rubisco activity, suggesting activation of this enzyme as the primary cause of this delay [3,4]. However, the impact this might have on production was not quantified.

Bread wheat (Triticum aestivum L.) is second only to rice in importance to the world’s population as a direct source of food calories [6]. After large improvements in global yields of wheat per hectare following the Green Revolution, improvement stagnated in the first decade of this century [6–9]. Improved partitioning of biomass to grain, i.e. harvest index, was roughly doubled, making it the key factor of genetic improvement [6,10–12]. Photosynthetic efficiency in wheat, as in all crops, falls well short of its theoretical potential and has stagnated in recent years. New innovations are therefore needed if genetic yield potential of wheat is to be improved further [10,12]. Photosynthetic efficiency in wheat, as in all crops, falls well short of its theoretical potential and has been improved little with selection and breeding [13]. Indeed some have argued that leaf photosynthetic capacity has been improved little with selection and breeding [13]. Indeed some have argued that leaf photosynthetic capacity has decreased with domestication [14].

The flag leaf of wheat, together with the ear, are considered to account for most of the carbohydrate that accumulates in the developing grain [15]. Furthermore, the proportion of photosynthate derived from the flag leaf relative to the ear has increased progressively with the increase in harvest index through the past 50 years [16], so increasing its importance as a source of carbohydrate for the developing grain. Using a current cultivar of wheat, this study: (i) determines the speed of adjustment of photosynthesis in the flag leaf on transfer from shade to sun; (ii) infers, by developing dynamic A/c_i responses, the in vivo factors determining the speed of adjustment; and (iii) estimates the loss of potential production that may result from this slow adjustment.

2. Material and methods

(a) Plant material and growth conditions

A bread-making quality wheat (Triticum aestivum L.) cv. Highbury was used (Nottingham University, UK). Seed was sown into 31 containers of soil-less compost mix (Petersfield Products, Leicester, UK) incorporating a broad range fertilizer (PG Mix, Yara, Grimsby, UK), in a controlled environment greenhouse. Day/night temperatures were maintained at 24 ± 9.3°C/19 ± 1.4°C (mean ± s.d.) and relative humidity was 45 ± 12.6%. Growth CO₂ concentration in the greenhouse air was measured hourly and averaged 449 ± 23 μmol mol⁻¹ over the duration of the experiment. Daylight was supplemented with high pressure sodium lamps (SON-T 400 W, Philips Lighting, Eindhoven, The Netherlands) to ensure a minimum photosynthetic photon flux density (PPFD) of 500 μmol m⁻² s⁻¹ at the plant surface for 16 h d⁻¹. After germination, seedlings were thinned to one per container. Containers were watered daily to field capacity.

(b) Gas exchange and analysis of photosynthetic CO₂ responses

Photosynthetic gas exchange of fully emerged flag leaves was measured between heading and anthesis. The mid-section of the leaf was enclosed within a controlled environment cuvette integrated into a portable gas exchange system incorporating infrared CO₂ and water vapour analysers (LI-6800F, LI-COR, Lincoln, NE). Light was provided through the light-emitting diodes incorporated into the cuvette head.

Response curves of net leaf CO₂ uptake (A) to PPFD were determined to obtain preliminary values for day respiration (R_d) and identify the lowest PPFD that would be saturating for subsequent static and dynamic A/c_i analysis. In all measurements, leaf temperature was maintained at 25°C and leaf vapour pressure deficit (VPDleaf) at ca 1.0 kPa. Transpiration was measured simultaneously to determine stomatal conductance to water (g_s,leaf) to correct for impacts on measured CO₂ fluxes, and to allow calculation of c_i based on transpiration-corrected leaf conductance to CO₂. Leaves were induced to steady state at a cuvette CO₂ of 400 μmol mol⁻¹ and a PPFD of 1500 μmol m⁻² s⁻¹, allowing at least 40 min for steady state to be achieved. PPFD was then stepped down through 1200, 1000, 800, 600, 500, 400, 300, 200, 150, 100, 50 and 0 μmol m⁻² s⁻¹; measurements were collected immediately after exposure to PPFD at each light level. The response of A to incident PPFD was then fit using nonlinear least squares (nls R Language and Environment) to a non-rectangular hyperbola [17]:

\[ A = \frac{dI + A_{sat}}{2D} = -R_d, \]

where d is the realized quantum yield (mol mol⁻¹), I, incident PPFD (μmol m⁻² s⁻¹); A_sat the maximum gross rate of leaf CO₂ assimilation (μmol m⁻² s⁻¹); D, a dimensionless curvature parameter; R_d, the daytime rate of respiration (μmol m⁻² s⁻¹). Fitted values were (mean ± s.e.): φ, 0.067 ± 0.0049; A_sat, 38.1 ± 3.58; d, 0.58 ± 0.044; R_d, 1.68 ± 0.075; K_d was used as an initial value in models of the photosynthetic response to CO₂ concentration.

The ‘static’ response of A to c_i (expressed as the mole fraction in air: μmol mol⁻¹) was determined by obtaining steady-state A under the conditions described above, but maintaining PPFD at 1200 μmol m⁻² s⁻¹ and varying CO₂ in the air surrounding the leaf (c_i). Measurements were made at 430, 300, 200, 150, 100, 50 and approximately 0 μmol mol⁻¹ c_o, which was then increased to 430, 500, 600, 800 and 1000 μmol mol⁻¹ following procedures recommended previously [18]. Values for A and c_i were calculated from the equations of Farquhar & von Caemmerer [19].

Parameters of the response of A to c_i were characterized on the basis of limitation by Rubisco (A_c) and electron transport (A_J) [19].

\[ A_c = V_{c,max} \left( \frac{c_i - I^*}{c_i + K_c(1 + O/D)} \right) - R_d \]

and

\[ A_J = \left( \frac{c_i - I^*}{4.5c_i + 10.57} \right) - R_d. \]

The maximum rate of carboxylation (V_{c,max} μmol m⁻² s⁻¹), the rate of electron transport (J, μmol m⁻² s⁻¹), and R_d were fit...
using nonlinear least squares. To do this, values for $g^*$, the photosynthetic compensation point; $K_d$, the Rubisco Michaelis constant for CO$_2$; and $K_v$, the Rubisco Michaelis constant for O$_2$, were calculated at the mean leaf temperature, based on values for tobacco following Bernacchi et al. [20]. Using nonlinear least squares, $V_{c,max}$ and $R_d$ were estimated first, and the value of $R_d$ was used when estimating $J$. Parameters were normalized to 25°C following previously described relationships to temperature [20]. Because calculation of the true $V_{c,max}$ requires determination of $c_0$, we note that the term determined here from $c_0$ and referred to as $V_{c,max}$ is determined by both the \textit{in vivo} activity of Rubisco and mesophyll conductance ($g_m$).

To identify the transition point between Rubisco and ribulose-1,5-bisphosphate (RuBP) limitation, we used an approach derived from the recommendations of Gu et al. [21]. All possible combinations of $A_c$ and $A_p$ were fit to each CO$_2$ response curve, and the best fit was selected based on the minimal value of

$$
\sum (\frac{A_c - A_i}{A_i})^2 + \sum (\frac{A_p - A_i}{A_i})^2
$$

where $A$ are predicted, and $A_i$ observed values for the respective segments of the $A/c_i$ curves. The best fitting $A_c$, $A_p$ combination was considered admissible if the transition point predicted fell between data assigned to $A_c$ and $A_p$. Stomatal limitation ($l$) was also calculated from the $A/c_i$ response [22],

$$
l = \frac{A_c - A_p}{A_c},
$$

where $A_c$ is the value of $A$ determined from the $A/c_i$ response if $c_i = c_r$ i.e. assuming infinite boundary layer and stomatal conductances. $A_p$ is the actual $A$ achieved at the given $c_r$, i.e. accounting for the decrease in $c_i$ resulting from the actual stomatal conductance ($g_s$).

To determine the limitations to $A$ during low to high light transitions leaf gas exchange was measured at a range of $c_0$ and ‘dynamic’ $A/c_i$ responses constructed as described previously [24]. At the start of measurements each leaf was brought to steady state at a $c_0$ of 400 μmol mol$^{-1}$, PPFD of 1200 μmol m$^{-2}$s$^{-1}$, cuvette air temperature of 25°C, and VPD at 1.0 kPa. Induction measurements followed decreases in PPFD to 50 μmol m$^{-2}$s$^{-1}$ for 30 min (shade): gas exchange was recorded at 10 s intervals for 15 min following a step change back to ‘sun’ (1200 μmol m$^{-2}$ s$^{-1}$ PPFD), a PPFD sufficient for saturation of $V_{c,max}$ and $J$. The cycle of 30 min shade + 10 min sun was repeated at $c_0$ of 50, 100, 200, 300, 400, 500, 600, 800 and 1000 μmol mol$^{-1}$. Within a few seconds after the transition from ‘shade’ to ‘sun’, leaf temperatures rose by approximately 1°C to the range 24.5–25.1°C, with coefficients of variation (CV) during inductions less than 0.63%. The range of leaf VPD during inductions was 1.0–1.2 kPa, with CV < 2.8%; CV for $c_0$ were less than 3%. In the shade at ambient and higher cuvette $c_w$, $g_s$ decreased, minimizing the range of $c_i$ that could be obtained and preventing characterization of $A_i$. To fully characterize photosynthetic limitations during induction dynamic $A/c_i$ measurements were repeated, but using a $c_0$ of 100 μmol mol$^{-1}$ during shade to inhibit stomatal closure before switching to the desired $c_0$ and sun condition for induction.

CO$_2$ response curves were fit to the data for each 10 s interval of induction. A small number of inadmissible fits were obtained when there was insufficient data to fit both $A_c$ and $A_p$; we re-fit these cases using either $A_c$ or $A_p$ (alongside $R_d$), and chose the best fit based on a comparison of $\sum (A_c - A_i)^2$ and $\sum (A_p - A_i)^2$. To determine whether $A$ during photosynthetic induction was limited primarily by $V_{c,max}$ or $J$, parameters from the dynamic $A/c_i$ responses were used in combination with steady-state $g_{sw}$ to estimate a maximum probable operating $c_i$ ($g_{sw}/1.64$)($c_i - c_0$) equated to $V_{c,max}$($c_i - V_{c,max}$)($c_i + K_{CO_2}$) — $R_d$. The resulting quadratic was solved for $c_i$ at each 10 s interval through induction.

### (c) \textit{In vivo} kinetics for Rubisco activation in wheat

The time constant for Rubisco activation was determined from the kinetics of $A$ following transitions from low to high light, excluding transient changes occurring during the first minute as described previously [23]

$$
A' = A'_t - (A'_t - A_i)e^{-t/\tau}
$$

where $A_i$ is a steady-state value for $A$: the potential gross leaf CO$_2$ assimilation in sun, corrected to constant $c_i$. $A^*$ was calculated as $(A + R_d)(c_i/c_1)$, where $c_1$ is the steady-state $c_0$ approximated as 0.65$s_m$ and $R_d$ was assumed to be 1.6 μmol m$^{-2}$s$^{-1}$ (the fitted value from our steady-state $A/c_i$ response). $A_i$ is the gross assimilation extrapolated to $t = 0$, which provides an estimate of initial Rubisco activation [3,23]. Finally, $\tau$ is the time constant for recovery of photosynthesis. The model was fit using both nonlinear least squares (using data collected from 60 s until 600 s after the change in PPFD), and the linear regression technique described previously [23], where a plot of ln($A'_t - A^*$) against time has slope $-1/\tau$ and intercept ln($A'_t - A_i$). The same model was fit to $A^*$ and $V_{c,max}$, allowing a novel comparison between estimates of $\tau$ for Rubisco activation based on $A^*$ and $V_{c,max}$.

To obtain integrated CO$_2$ assimilation ($\overline{A}$) during increases in PPFD, if it is assumed that RuBP concentration is saturating, the model can be re-written as [24]

$$
\overline{A} = A'_t - (A'_t - A_i) + A'_i - A_i)e^{-t/\tau}
$$

Setting $\tau = 0$ estimates potential assimilation rate with a square response to PPFD ($\overline{A}_{max} = A'_t$), and an estimate of foreground assimilation is $\overline{A}_{max} - \overline{A}$. To determine the impacts of Rubisco kinetics on CO$_2$ assimilation, the response of $\overline{A}$ to PPFD was modelled at approximately 60 s time intervals during a diurnal period. A PPFD regime was used that predicted light available to the second layer of a crop canopy [25]. This is justified by the observation that the layers represent the first layer and cause intermittent shading of the flag leaves as the angle of the sun progresses through the day. In the data used, PPFD at a point on the leaf had been predicted using reverse ray tracing, with shade-generating structures in the canopy distributed at random within each layer. A clear sky day in June at latitude 44°N had been assumed for calculating sun angles over the course of the day [25]. To model gross photosynthesis throughout the diurnal period, initial photosynthesis for each approximately 60 s interval ($A_f$) was taken to be $A^*$ predicted for the preceding interval, except at first light where $A_i$ was assumed to be zero. The potential maximum gross rate of photosynthesis during each timestep ($A'_{max}$) was predicted as ($\overline{A}_f + A_{sat} - \sqrt{(\overline{A}_f + A_{sat})^2 - 4\overline{A}_f A_{sat}})/2$, using parameters from the PPFD response curves fit to steady-state data and setting $t = $ duration of the timestep (s). When PPFD was increasing we set $\tau$ to 180 s, the mean value determined by substituting the time-series of $V_{c,max}$ from our dynamic $A/c_i$ analysis into the induction model:

$$
V_{c,max} = \frac{(V_{c,max} - V_{c,max})(1 - e^{-t/\tau})}{\tau}
$$

When PPFD was decreasing, we estimated $\overline{A}'$ as $A'_t$, and predicted $A_i$ as above, but using $\tau = 300$ s for the rate of decrease towards the lower $A_f$ predicted from PPFD. The value of $\tau = 300$ s for the decrease was predicted on the basis that 30 min ‘shade’ treatment resulted in a decrease in $V_{c,max}$ from $V_{c,max}$ to $V_{c,max}/1.64$.

### 3. Results

(a) Factors limiting photosynthesis in wheat, cv. 

**Highbury: steady state**

Responses to light and CO$_2$ measured from steady-state photosynthesis indicated high maximum net leaf CO$_2$
assimilation rates ($A_{sat} > 30 \text{ µmol m}^{-2} \text{s}^{-1}$; figures 1 and 2), with saturation approached at a PPFD of about $1200 \text{ µmol m}^{-2} \text{s}^{-1}$ (figure 1a). This was the subsequent level chosen as a proxy for ‘sun’ conditions in examining induction. On transfer from ‘shade’ ($50 \text{ µmol m}^{-2} \text{s}^{-1}$) to ‘sun’ at $c_a$ of $400 \text{ µmol mol}^{-1}$ there was an initial rapid increase in $A$ (figure 1b), followed by a slower increase lasting ca 15 min. When leaves were maintained at a $c_a$ of $100 \text{ µmol mol}^{-1}$ in the shade to prevent stomatal closure, then exposed to ‘sun’ at $c_a$ $400 \text{ µmol mol}^{-1}$, the initial transient increase in $A$ saturated at a higher value, indicating a decrease in stomatal limitation; however, after 10 min $A$ was similar in the two experiments (figure 1b).

Static $A/c_i$ responses showed that at steady state, limitation of $A_{sat}$ was consistent with $A_C$ (figure 2); $V_{i,trans}$, the transition from limitation by $A_C$, with $V_{i,max}$ ($113 \pm 13 \text{ µmol m}^{-2} \text{s}^{-1}$; mean $\pm$ s.e., $N = 3$), to limitation by $A_P$ with $J$ ($214 \pm 18 \text{ µmol m}^{-2} \text{s}^{-1}$), occurred at $407 \pm 27 \text{ µmol mol}^{-1}$. This transition was therefore well above the operating $c_i$ i.e. that obtained at the current atmospheric level of $400 \text{ µmol mol}^{-1}$ and above the $c_i$ that would be obtained under the slightly elevated ambient $c_a$ in the greenhouse of $449 \text{ µmol mol}^{-1}$.

(b) Factors limiting photosynthesis in wheat, cv. Highbury: during induction

$A/c_i$ responses constructed for each 10 s interval of induction following transition from 50 to $1200 \text{ µmol m}^{-2} \text{s}^{-1}$ PPFD (electronic supplementary material, figure S1) showed several
phases of photosynthetic limitation. Admissible, best fitting models during the first 40 s after the transition to sun, consisted in most cases solely of limitation by $A_c$, with $V_{c,\text{max}}$ at less than 40% of its steady-state value (compare figures 2 and 3). However, sums of squares (SS) for residuals of models fit as a single limitation phase were relatively high (6.97–37.91); stronger fits were obtained when both $A_c$ and $A_i$ could be identified (figure 3b–f; SS, 1.04–12.29).

Initially, both $V_{c,\text{max}}$ and $J$ increased, but $J$ increased more rapidly than $V_{c,\text{max}}$, so $c_{i,\text{trans}}$ rose to a maximum approaching 600 μmol mol$^{-1}$ at around 2.5 min (figure 3b,c). At 3 min, $J$ saturated close to 250 μmol m$^{-2}$ s$^{-1}$ and $c_{i,\text{trans}}$ began to decrease as $V_{c,\text{max}}$ slowly rose (figure 3d). For the remainder of the first 10 min following the transition, decreases in $c_{i,\text{trans}}$ continued, in concert with increasing $V_{c,\text{max}}$. The increase in $V_{c,\text{max}}$ was most rapid in the first 4.5 min (figure 3e), and adjustment continued through to 10 min (figure 3f). After this time, $A/c_i$ responses were comparable with those measured at steady state (figures 2 and 3f).

Time series for $V_{c,\text{max}}$, $J$ and $c_{i,\text{trans}}$ (figure 4) developed from data including those shown in figure 3, provided a $\tau$ for $V_{c,\text{max}}$ of ca 3 min (mean ± s.e.m., 181 ± 12.8 s), more than three times that for $J$ (50.1 ± 1.91 s); slow adjustment in $V_{c,\text{max}}$ clearly had a strong effect on $c_{i,\text{trans}}$ between 2.5 and 10 min into the induction (figure 4). Calculation of a maximum probable operating $c_i$ (figure 4; based on $A/c_i$ responses and steady state $g_{\text{sw}}$) further demonstrated that $c_{i,\text{trans}}$ exceeded this value throughout the period of induction, confirming that in our analysis apparent $V_{c,\text{max}}$ was the dominant biochemical variable limiting photosynthesis.

Figure 3. Photosynthetic induction after transition from 50 to 1200 μmol m$^{-2}$ s$^{-1}$ PPFD, represented by dynamic $A/c_i$ analysis at: (a) 20 s; (b) 1 min; (c) 2.5 min; (d) 3 min; (e) 4.5 min; (f) 10 min.
Comparisons of \( t \) for \( V_{c,max} \) with estimates of \( t \) for Rubisco activation effects on photosynthesis based on \( A^* \) suggested a range of values for \( t \) between 3 and 4 min (electronic supplementary material, figure S2).

Shading, such as that simulated by our 50 \( \mu \)mol m\(^{-2}\) s\(^{-1}\) PPFD pre-treatment, affects stomatal opening. To characterize \( A^J \) using dynamic \( A/c_i \) analysis, it was necessary to increase stomatal conductance following shade by decreasing \( c_a \) during the low-light pre-treatment. Compared with plants pre-treated at 400 \( \mu \)mol mol\(^{-1}\) \( c_{ar} \) during the first 4 min after illumination both \( A \) and \( g_{sw} \) of plants pre-treated at \( c_a = 100 \) \( \mu \)mol mol\(^{-1}\) were higher by 30–65% (figure 1b) and 88–171% (figure 5c), respectively, resulting in an increase in cumulative net CO2 assimilation of 22%. Pre-treatment with a \( c_a \) of 100 \( \mu \)mol mol\(^{-1}\) also resulted in progressive decreases in \( c_i \) through the induction, suggesting increasing

\[ b \]

\[ c \]

\[ d \]

(figure 4c). Comparisons of \( \tau \) for \( V_{c,max} \) with estimates of \( \tau \) for Rubisco activation effects on photosynthesis based on \( A^* \) suggested a range of values for \( \tau \) between 3 and 4 min (electronic supplementary material, figure S2).

Shading, such as that simulated by our 50 \( \mu \)mol m\(^{-2}\) s\(^{-1}\) PPFD pre-treatment, affects stomatal opening. To characterize \( A^J \) using dynamic \( A/c_i \) analysis, it was necessary to increase stomatal conductance following shade by decreasing \( c_a \) during the low-light pre-treatment. Compared with plants

\[ a \]

\[ b \]

\[ c \]
photosynthetic efficiency was a key control on $c_i$ (figure 5c). Pre-treatment at $c_i = 400 \mu mol \text{ mol}^{-1}$ resulted in rapid declines of $c_i$ to a minimum that was maintained for around 5 min before $c_i$ started to increase (figure 5b). In both cases, after 10 min $c_i$ remained below values expected at steady state (figures 2 and 4c); slow relaxation of stomatal limitation affected $c_i$ over considerably longer periods than relaxation of limitation by $V_{c,max}$. Immediately after PPFD increased, $I$ in leaves pre-treated at a $c_i = 400 \mu mol \text{ mol}^{-1}$ CO$_2$ was twice as high as in leaves treated at 100 $\mu mol \text{ mol}^{-1}$, reaching a maximum of 0.5. After 10 min $I$ was similar between the two treatments (figure 5d), but remained 50% higher than for steady state $A/c_i$ responses in both cases (400 $\mu mol \text{ mol}^{-1}$, 0.32; 100 $\mu mol \text{ mol}^{-1}$, 0.3).

### 4. Discussion

On shade to sun transitions, this study has shown that several minutes are required for the wheat flag leaf to re-attain maximum photosynthetic efficiency (figure 1b). At the level of leaf biochemical limitations, the apparent maximum activity of Rubisco ($V_{c,max}$) limits this rate of induction, implying activation of this enzyme as the key factor, rather than regeneration of the RuBP CO$_2$ acceptor molecule ($J$). This was clearly indicated by the fact that $c_i$ was well above the actual $c_i$ when $c_i$ was at the current atmospheric level of 400 $\mu mol \text{ mol}^{-1}$ and at the actual greenhouse growth $c_o$ of 449 $\mu mol \text{ mol}^{-1}$ (figures 3 and 4c). In contrast to previous studies [4], stomatal limitation plays a role in the speed of induction, declining from ca 0.5 in the first 3 min to about 0.3 at steady state, indicating that about 20% of the lag is due to stomatal movement (figure 5c). This is also indicated by the fact that when the leaf is at the ambient $c_i$ of 400 ppm throughout, $c_i$ declines to about 200 $\mu mol \text{ mol}^{-1}$ before recovering to ca 230 $\mu mol \text{ mol}^{-1}$ at steady state (figure 5b). Combining the ray tracing model of Zhu et al. [25] and the modelled kinetics of Rubisco de-activation and activation on sun-to-shade-to-sun transitions following Woodrow et al. [3,23,24], losses due to the slow induction were calculated. Parametrized on the data reported here for wheat flag leaves, the lag in activation of Rubisco following shade to sun transitions resulted in a 21% loss of potential flag leaf assimilation (figure 6).

The findings (figures 3 and 4c) indicate $V_{c,max}$ or the apparent maximum activity of Rubisco, as the major factor limiting the rate of induction, implying the speed of re-activation of Rubisco. This is consistent with previous studies of tobacco, rice and soya bean [3–5]. However, the apparent $V_{c,max}$ calculated from the $A/c_i$ response is also affected by mesophyll conductance ($g_m$). [CO$_2$] at Rubisco ($c_o$) will be less than $c_i$ due to mesophyll conductance. If $g_m$ increased...
during the course of induction, it would cause part of the apparent increase in $V_{c,max}$. As a physical conductance, $g_{st}$ would not vary. However, modelling suggests that in reality it will have some dependence on the positioning of organelles, and in particular the relative localization of chloroplasts and mitochondria, which may change in response to light levels within the leaf [26–28]. It is known that chloroplasts may alter their position with PPFD. Through its impact on $g_{st}$, this movement could explain some, but certainly not all, of the change in apparent $V_{c,max}$ [28]. Transporters and channels in membranes may change dynamically to affect Rubisco activation could in reality be a combination this activation with an increase in $g_{st}$.

Previous research has shown a strong correlation between the speed of induction and the activation of Rubisco, in particular, the enzyme Rubisco activase [3,5]. Also, as noted above, in contrast to a previous dynamic analysis of $A_{c1}$ responses in induction in soya bean [4], stomata limit the speed of induction, accounting for about 20% of the change (figure 5). However, stomatal opening appears to depend strongly on photosynthesis in the mesophyll [29,30]. Thus, there may be some dependency of the speed of stomatal opening on the speed of Rubisco activation in the mesophyll. Assuming $c_i$ in the shade is sufficient to support rapid carboxylation of Rubisco, increasing the speed of activation might increase the speed of stomatal opening.

The dynamic $A_{c1}$ method used to identify photosynthetic limitations in this study has been developed recently [4]. In this study, we found that it was necessary to decrease $c_{i1}$ in the ‘shade’ in order to limit stomatal closure that otherwise prevented characterization of $A_{i1}$ in wheat. We anticipate that this technical solution will not have had a substantial effect on Rubisco activation independent of the ‘shade’ because at low light photosynthesis will be entirely limited by RuBP regeneration not Rubisco, and because $c_i$ remained high. Decreases in activation linked with de-carbamylation as a result of low CO$_2$ availability [31] are unlikely in this scenario. Perhaps more importantly, dynamic $A_{c1}$ analyses are intended to capture non-steady state dynamics, and do so by characterizing induction at a range of $c_a$. The rate of Rubisco activation during induction is thought to respond to CO$_2$ availability [32], consistent with greater availability of CO$_2$ driving Rubisco carboxylation and minimizing alternative reactions (reviewed in [33]). The timed snapshots obtained using dynamic $A_{c1}$ analysis, in strict terms, violate the usual assumption made when using the Farquhar et al. model [34] that Rubisco activity is at steady state. Calculating $V_{c,max}$ in a dynamic analysis averages across measurements that may reflect different activation states. It is also possible that the eventual steady state of activation during each induction will depend on $c_a$, but evidence suggests decreases in activation under light saturated conditions are usually observed only when $c_i$ is significantly below 100 μmol mol$^{-1}$, and then only in certain species [31]. Nonetheless, specific parameter values for dynamic $A_{c1}$ response curves should be interpreted with some caution. The usefulness of the dynamic $A_{c1}$ analysis is primarily as a mean of assessing the sequence and approximate timing of transitions between different photosynthetic limitations during induction. We anticipate that experimentation and modelling to understand how $c_a$ affects Rubisco activation state during induction will improve our understanding of the induction process, and the potential feedbacks due to mesophyll and stomatal conductance responses.

Importantly, this research shows that the speed of non-steady-state adjustment of photosynthesis to light fluctuations in the field, regardless of underlying cause, will strongly affect flag leaf photosynthesis. In turn, this will decrease the supply of assimilate for the developing grain. Although, only the flag leaf was examined here, the same lags in induction will likely apply to all leaves of the plant. Thus, the growth and production that supports the development of the plant to flowering and seed fill will be affected. Increasing the rate of induction following shade to sun transitions under typical field conditions during grain filling would decrease the impact of a significant limitation, and therefore represents an excellent target through which increases in productivity would be obtained. The gains in productivity could be of similar magnitude to those observed by bioengineering a faster rate of adjustment to sun to shade transitions [1]. Acceleration might be achieved by over-expressing the amount of Rca [5], by targeted amino acid substitutions of Rca [35], altered ratios of alpha and beta forms [35], or by exploring the natural variation in speed of adjustment apparent in soya bean [4]. The results presented here suggest that these changes have the potential to open an important new route, through photosynthesis, to a much needed yield jump for wheat.

**Data accessibility.** The datasets supporting this article are available from Lancaster University: doi:10.17635/lancaster/researchdata/144.

**Authors** contributions. S.H.T. and S.L. designed experiments and statistical analyses, and co-wrote the article; S.H.T. carried out measurements.

**Competing interests.** We have no competing interests.

**Funding.** Lancaster University provided the financial support necessary to undertake this work.

**Acknowledgements.** We thank Dr Elizabete Carmo-Silva for helpful discussions on Rubisco activation and for supplying us with the wheat plants used here, and we thank Prof. Xinguang Zhu for providing raw data on light within canopies from his simulation study [25].

**References**


