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African trypanosomes are single-celled protozoan parasites that are capable of

long-term survival while living extracellularly in the bloodstream and tissues

of mammalian hosts. Prolonged infections are possible because trypanosomes

undergo antigenic variation—the expression of a large repertoire of antigen-

ically distinct surface coats, which allows the parasite population to evade

antibody-mediated elimination. The mechanisms by which antigen genes

become activated influence their order of expression, most likely by influen-

cing the frequency of productive antigen switching, which in turn is likely

to contribute to infection chronicity. Superimposed upon antigen switching

as a contributor to trypanosome infection dynamics is the density-dependent

production of cell-cycle arrested parasite transmission stages, which limit the

infection while ensuring parasite spread to new hosts via the bite of blood-

feeding tsetse flies. Neither antigen switching nor developmental progression

to transmission stages is driven by the host. However, the host can contribute

to the infection dynamic through the selection of distinct antigen types, the

influence of genetic susceptibility or trypanotolerance and the potential

influence of host-dependent effects on parasite virulence, development of

transmission stages and pathogenicity. In a zoonotic infection cycle where

trypanosomes circulate within a range of host animal populations, and in

some cases humans, there is considerable scope for a complex interplay

between parasite immune evasion, transmission potential and host factors to

govern the profile and outcome of infection.
1. Introduction
African trypanosomes are protozoan parasites of a range of mammalian hosts,

infecting humans, livestock and wild animal reservoirs. Trypanosome infections

continue to have important consequences for health and economic prosper-

ity within afflicted regions [1,2] (figure 1a). The parasites are transmitted by

blood-feeding tsetse flies, where the parasite undergoes development and non-

obligatory sexual exchange [3] prior to inoculation into a new mammalian host

in the saliva of the infected fly. Unusually for blood-borne protozoan parasites,

trypanosomes exist extracellularly throughout their life cycle, meaning that not

only must they resist innate immune responses but they must also overcome con-

tinual exposure to the humoural immune responses of their mammalian hosts.

Thwarting adaptive host immunity allows trypanosomes to survive and establish

chronic infections, enhancing transmission and dissemination. They achieve this

through an extreme capacity for antigenic variation, allowing the parasite popu-

lation to evade host antibody responses for months to years (figure 1b). The

molecular mechanisms of trypanosome antigenic variation have been the subject

of intense research for over three decades and are the subject of several recent

reviews [4–7]. In recent years, however, the sophistication of the parasite’s
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T. b. gambiense: 
24 countries in West and central Africa. Responsible for 98% of cases. 
This is a chronic disease that progresses over months–years. 

T. b. rhodesiense: 
three countries in eastern and southern Africa. Responsible for 2% of cases.
This is an acute disease that progresses over weeks–months. 
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Figure 1. An overview of African trypanosomiaisis. (a) Shows a summary of the distribution and disease profile of the two species of African trypanosome responsible for
human infection. Animal African trypanosomiasis (caused by T. brucei, T. congolense and T. vivax) is distributed throughout sub-Saharan Africa coincident with the dis-
tribution of the disease vector, tsetse flies. (b) Shows the conventional view of a trypanosome infection profile. Infection chronicity is achieved by appearance of a
progression of waves of parasitaemia with distinct waves being composed of trypanosomes with antigenically distinct coats (for simplicity, each wave is shown as a
single VSG, though normally many VSGs are represented per wave). Within each wave of parasitaemia, a developmental switch occurs, whereby proliferative slender
forms become arrested stumpy forms as parasite numbers increase in response to the accumulation of the quorum-sensing signal, SIF.
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strategies to achieve infection chronicity, and so increase their

capacity for transmission, have become clear, revealing a com-

plex interplay between the parasite’s strategies for immune

evasion, their developmental control of transmission potential

and the contributions of host immunity in a field setting where

hosts can be continually exposed to trypanosome infections

[8–12]. The interactions between these different parasite and

host components of the infection dynamic are likely to drive

responses that shape the epidemiology and evolution of the

infection over time and in different geographical settings.

This review seeks to summarize how the different contributors

to the trypanosome infection profile operate and interface to

create a complex and finely balanced host–parasite interaction.
2. Antigenic variation
In the mammalian bloodstream, the surface of the African tryp-

anosome cell is completely enshrouded by a homogeneous

protein coat comprising a single variant surface glycoprotein

(VSG) type [13]. The VSG is a glycophosphatidylinositol-

anchored glycosylated protein that shields common and invari-

ant antigens on the parasite surface from the immune system

[4] and protects the parasite from complement activated by

the alternative pathway [14]. Although the key component

of the parasites’ immune evasion strategy, the VSG is highly

immunogenic. Specifically, an antibody response is raised to

epitopes on the exposed N-terminal domain of the VSG, result-

ing in parasite lysis by the classical pathway of complement

activation [15]. This, however, does not clear the infection as

a proportion of parasites switch to the expression of an antigen-

ically distinct VSG, which is not recognized by antibodies

raised to earlier antigen types. Experimentally, at least 100

antigenically distinct coats have been observed to be expressed

from a single infecting trypanosome [16], but this is
undoubtedly an underestimation due to detection limitations.

In reality, the trypanosome’s potential for the expression of

distinct antigenic types may be almost limitless, due to the

possession of a huge archive of VSG genes and highly flexible

‘switching’ mechanisms that allow new VSGs to be activated

during antigenic variation.

The expression of a given VSG gene depends upon its

location within an active telomeric VSG expression site, of

which there are potentially 15–25 in the trypanosome

genome [17,18], each with a different VSG. Only one expression

site is fully active at a time [19], this being uniquely associ-

ated with a sub-nuclear transcription factory, the expression

site body [20,21]. In addition, a complex interplay between epi-

genetic silencing factors [22], telomere factors and nuclear

envelope association act to ensure allelic exclusion and inactiv-

ity of the other expression sites [5]. Active expression sites are

transcribed by RNA polymerase I [23] and several expression

site-associated genes (ESAGs) are co-expressed with the VSG

gene in the same polycistronic transcription unit [24–26]. The

multiplicity of VSG expression sites means that expression of

a new VSG gene can occur through a transcriptional switch

that activates a new expression site and silences the previously

active site. However, by far the most common route of VSG coat

switching involves recombination (approx. 90% of switching

events [27]), mainly through gene conversion events in which

a silent VSG gene is copied and replaces the expressed VSG

in the expression site. It is this type of VSG switching that

allows prolonged infections and generates VSG diversity

beyond the number of VSG genes in the genome archive.

The scale of the archive of VSG genes in trypanosomes is

huge, dwarfing the number of antigenically variant genes

in the genomes of other organisms, such as Plasmodium,

that also rely on antigenic variation for survival. The VSG

repertoire has been characterized in two strains of Trypanosoma
brucei [28–30], where antigenic variation is best described, as
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Figure 2. VSG gene conversion during antigenic variation. (a) Gene conversion of intact VSG genes into the active bloodstream VSG expression site (BES), using
donor VSGs that are either present in a minichromosome or a subtelomeric VSG array. In all cases, the VSGs are shown as coloured arrows and the extent of
sequence copied during gene conversion is indicated by a grey box, within which the direction of copying is shown by a white arrow. During gene conversion
from a silent minichromosome or array VSG (both light blue), the upstream boundary is normally 70 bp repeats (hatched box), which are found adjacent to most
VSGs (though their numbers are lower when associated with array VSGs). The downstream boundary of gene conversion is frequently the 30 end or 30 flank of the
VSG, though this can extend further when minichromosome VSGs act as donors, including reactions that encompass the telomere repeats (small, arrayed arrows). In
the BES, ESAG genes (white arrows) are co-transcribed with the VSG (red) from a common promoter (thin black arrow); silent BES (not shown) can also act as donors
of new VSGs by gene conversion, or can elicit VSG coat changes by transcriptional switching (not shown; see text). (b) Segmental gene conversion to form novel
mosaic VSGs. In this reaction, multiple silent VSGs (here, three: light blue, orange and green) are recombined together to form a new VSG that is a composite of the
three gene sequences. The VSGs that act as donors in segmental gene conversion are frequently pseudogenes and are normally located in disparate regions of the
subtelomeric array archive. Many details of this reaction are uncertain, and some assumptions or simplifications are made: segmental gene conversion to form VSG
mosaics may not happen in the active BES, as shown here; gene conversion is shown to encompass only VSG ORF-internal sequences, but the reactions may be
‘anchored’ by upstream or downstream homology; VSG mosaics normally display much greater intermingling of the donor VSG sequences than is indicated here.
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well as in the animal infective trypanosomes Trypanosoma vivax
and Trypanosoma congolense [31]. Even though the VSG catalo-

guing is still incomplete, the T. brucei genome can contain more

than 2000 VSG genes (more than 20% of the coding genome), of

which the majority exist in transcriptionally silent subtelomeric

arrays, although a substantial fraction are found in aneuploid

minichromosomes. The VSG repertoire appears highly

dynamic, with changes in VSG numbers and identities detect-

able during strain propagation [30], and larger scale

rearrangements leading to chromosome size variation within

and between strains [32]. Most VSGs are single copy in the

archive, sharing little primary sequence homology with other

VSGs. However, only approximately 5–10% of the subtelo-

meric array VSG repertoire encodes intact and functional

VSGs, with the remainder either containing frameshifts or

truncations rendering them incapable of generating intact

VSGs (approx. 80–85%) or encoding predicted features that

are atypical of VSGs (10%) [33]. Importantly, the VSG pseudo-

genes are not non-functional, but make a major contribution to

antigenic variation (see below). Nonetheless, the detection of

such a large pseudogenic repertoire was unexpected, particu-

larly as other organisms (e.g. Anaplasma marginale and
Borrelia burgdorferi) that use similar gene conversion strategies

based on antigen pseudogenes can generate antigenic variation

and chronic infections with much smaller gene repertoires

(tens of genes) [7]. Moreover, until genome sequencing, the

activation of new VSGs based on pseudogenes, though

detected [34,35], was thought to be a rare event during tryp-

anosome infections; in fact, it appears to be the major driver

of long-term infections and transmission [36–38].

Two different gene conversion reactions contribute to

VSG switching (figure 2). In one reaction, an intact, pre-

viously silent VSG replaces the complete VSG in the active

expression site (figure 2a). This reaction is dependent upon

flanking sequence homology, perhaps most notably

upstream 70 bp repeats that are uniquely associated with

approximately 90% of VSGs [37]. The 70 bp repeats delimit

the boundary of VSG gene conversion of intact VSGs

from the subtelomeric arrays and the minichromosomes.

VSGs in the silent expression sites also act as substrates in

intact VSG gene conversion and, despite the greater available

homology, the increased numbers of 70 bp repeats in these

sites mean they are also frequently, though not exclusively,

the upstream boundary here [39–41]. The second reaction,

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140288

4

 on August 19, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
termed segmental gene conversion, involves recombination

driven by the coding sequence of the VSGs, so enabling util-

ization of the VSG pseudogenes; here, multiple VSG ORFs

(intact, pseudogene or gene fragments) can be recombined

(figure 2b), creating novel antigens (mosaic VSGs) and there-

fore multiplying the potential expressed VSG diversity well

beyond the limitations of the existing genome’s VSG reper-

toire [37,38]. We have much to learn about this reaction; for

instance, unlike VSG conversion of intact genes, which gen-

etic evidence shows is linked to homologous recombination,

no factors (cis- or trans-acting) that act in segmental VSG

gene conversion have been described; also, we do not know

where VSG assembly occurs in the genome.

The different mechanisms of VSG gene activation

(expression site activation, gene conversion driven by flanking

repeat sequences, assembly of mosaic genes) have different

probabilities that shape the profile of expressed VSGs during

a chronic infection [42]. Early in infection, switching between

intact telomeric VSG genes seems to predominate. In part,

this may be due to transcriptional switching, perhaps as

a means to establish active transcription of the most host-

appropriate expression site [43]. However, it is also a result of

early telomeric VSG recombination, which may reflect the

observation that the proportion of such VSGs that are intact

and functional, both in the expression sites [18] and in the mini-

chromosomes [30], is much higher than in the subtelomeric

arrays. Equally, telomeric location may promote recombino-

genic interactions [44]. Activation of intact silent subtelomeric

VSG genes by gene conversion using homologous flanking

sequences is seen next; because these events are independent

of the sequence of the previously expressed VSG, the order

of VSG activation is unpredictable. Thereafter, mosaic VSG

assembly by segmental gene conversion predominates and

sustains the appearance of new antigen types [37,38], this

being necessary to maintain the infection in a context where

parasites expressing or re-expressing frequently activated

VSG are eliminated by antibodies generated during exposure

earlier in the infection. In this phase of the infection, recombin-

ation within the coding region of VSG genes appears to

generate dependency on the previously expressed VSG gene,

based on a requirement for relatively closely related VSGs,

creating the potential for directionality in the order of activa-

tion of VSG genes. Although this has the potential to create a

further hierarchy in the appearance of expressed antigens, the

complexity of the recombination events and the selection of anti-

genically novel VSG assemblies by the immune system makes

the expressed VSG unpredictable and the available evidence

suggests increasing VSG diversity with time [38]; indeed, it is

probable that the capacity for such diversity has been signifi-

cantly underestimated by the experimental approaches used

to date. Moreover, as the assembly of VSG mosaics initiates

and progresses independently in each infection, different hosts

will be exposed to completely different antigen repertoires

that would prevent any possibility of generating meaningful

immunity to the infecting parasite population or to subsequent

co-infecting trypanosome populations.
3. Developmental contributions to the infection
dynamic

Like many pathogens, the trypanosome must balance viru-

lence (defined here as proliferation in the host), pathogenicity
(defined here as damage to the host) and transmission (i.e.

the capacity for its successful uptake and establishment in

the tsetse fly) to maximize its long-term survival and spread.

The trypanosome achieves this by regulating its growth

within mammalian hosts in a density-dependent manner

[45–47] and through the generation of a specialized develop-

mental stage, the stumpy form, optimized for transmission to

tsetse flies [48]. These adaptations are linked because the

stumpy forms are non-proliferative and are generated from

proliferative slender forms through a quorum-sensing-like

process, whereby a soluble parasite-derived factor triggers

the developmental transition [45]. The identity of the factor,

called stumpy induction factor (SIF) (though it may in fact rep-

resent a mixture of factors), is unknown but evidence suggests

that it is small (less than 500 Da), heat stable and generated by

slender forms, such that it accumulates to provide a measure of

parasite density [45]. While the factor is uncharacterized, a

recent genome-wide screen identified molecular components

of the cellular response pathway leading to the production of

stumpy forms [49]. Several protein kinases and phosphatases

were revealed as signal transduction components, as well as

gene expression regulators (namely predicted RNA-binding

proteins) and hypothetical proteins of unknown function.

The screen identified drivers of stumpy formation whose

genetic depletion or ablation prevented the developmen-

tal response regardless of parasite density, complementing

earlier studies that had identified molecules able to inhibit

stumpy formation [50–52]. Analysis of the identified pathway

components has shown similarity to nutrient sensing and

developmental responses in yeasts and Dictyostelium [49,53],

suggesting that the signalling pathways regulating trypano-

some stumpy formation share evolutionary origins with

fundamental environmental sensing pathways conserved in

diverse eukaryotes [53].

The balance between slender and stumpy forms within

each wave of parasitaemia and during the course of a chronic

trypanosome infection plays a significant part in controlling

the infection dynamic of the parasite [8]. Early in infection,

the parasites are predominantly slender and numbers rapidly

increase [9]. However, the accumulation of SIF drives cell-

cycle arrest and then morphological development to stumpy

forms, this being accompanied by the expression of several

stumpy form characteristics, including the expression of the

PAD1 surface transporter that detects transmission of the para-

sites taken up in a tsetse fly blood meal [54]. Stumpy forms are

also somewhat more robust than slender forms: they are more

tolerant of pH stress and proteolytic attack [55] (aiding their

survival in the tsetse midgut) and are better able to survive

at equivalent antibody titres [56,57], this being assisted by

their capacity for the clearance of antibody from their surface

by hydrodynamic flow [57].

Nonetheless, with sufficient antibody titres, both slender

and stumpy forms are destroyed such that the parasite numbers

rapidly decline. Despite its stability in vitro, SIF must rapidly

turn over in vivo, allowing parasites that have undergone an

antigenic switch to begin to accumulate as proliferating slender

forms and thereby re-establish the parasitaemia. In textbook

descriptions, this balance between proliferation as slender

forms, differentiation to stumpy forms, the immune clearance

of slender and stumpy forms and the recrudescence of anti-

genically distinct slender forms generates regularly periodic

waves of parasitaemia. However, a quantitative analysis of

parasite numbers and the proportion of stumpy forms in

http://rstb.royalsocietypublishing.org/
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Figure 3. The classical description of the interplay between antigenic variation and infection chronicity (redrawn from [58]). In scenario A, the parasites overgrow
and kill the host. Scenario B occurs when parasites are rapidly cleared from the host. Scenario C is characteristic of trypanosome infections and is dependent upon
both antigenic variation to evade specific immune responses (prevents scenario B) and density-dependent differentiation of slender to stumpy parasites (prevents
scenario A). These processes are parasite-driven and independent of the host. Scenario C maximizes transmission, which will ultimately be the primary selective force
on the trypanosome population. Several factors will determine the kinetics of infection in scenario C (i.e. infection duration and total parasite load; D) and these will
include host susceptibility, parasite virulence and population factors such as herd immunity and co-infections, and the interplay of these factors with parasite
antigenic variation and differentiation. These selective factors will shape the usage and evolution of the VSG repertoire at the individual and population levels.
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chronic mouse infections demonstrated a more complex infec-

tion profile, where distinct cyclical waves of parasitaemia

were not obvious later in infection and stumpy forms stably

predominated in the overall parasite population [9]. This infec-

tion profile has been interpreted to help the trypanosomes

to get an early foothold in a mammalian infection, aided by

the proliferation and rapid antigen switching of the initial

slender population, with the later stumpy-enriched popula-

tion in a chronic infection prolonging host survival and

enhancing the probability of transmission [8]. This model, how-

ever, has not been tested in livestock infections where

parasitaemias are usually lower than in mice, and in which

the textbook infection kinetics of distinct peaks of parasitaemia

are more readily identified.
4. Balancing virulence and transmission in
trypanosome infections

The development of stumpy forms might serve several

beneficial purposes for trypanosomes (figure 3). Firstly, the

production of arrested stumpy forms as the parasitaemia

accumulates prevents an uncontrolled proliferation of slender

forms that would rapidly kill the host. Secondly, the more

robust nature of the stumpy form when compared with the

slender form would promote its survival upon transmission

to the tsetse fly, where the parasite is attacked by the proteo-

lytic environment of the insect midgut. Finally, by reducing

the overall proportion of proliferative forms in the mamma-

lian parasitaemia in chronic infections, the overall frequency

of antigenic variation would be reduced [9] (as only prolifera-

tive forms would undergo productive antigen switches),

potentially prolonging the functional within-infection life-

time of the antigen repertoire [9], and this limitation on

repertoire usage may also play a role in restricting herd

immunity and reinfection at the host population level [8].

Although each of these potential benefits would apparently

favour parasite survival and spread, direct evidence for
each is limited. For example, while the laboratory selection

of parasite lines that can no longer generate stumpy forms

does generate virulent lines that rapidly kill the host

[59,60], stumpy forms are not detected in other African tryp-

anosome species outwith the T. brucei group (e.g. T. congolense
and T. vivax) [61,62]. These species nonetheless are sustained

successfully in sub-Saharan Africa and transmitted by tsetse

flies, with T. congolense entering the fly midgut initially to

establish infection. Furthermore, there is little experimental

evidence that the proportion of stumpy forms in an infection

dominates the likelihood of transmission. While studies

clearly support the importance of stumpy forms in trans-

mission [63], the advantage of having 90% as opposed to

10% stumpy forms in a tsetse blood meal is less clear assum-

ing sufficient parasites are ingested. Finally, the significance

of restricting exposure to the immune system of different anti-

gen types is unknown. While the rapid expression of many

antigen types might unnecessarily expose the parasite’s

VSG repertoire and so limit infection chronicity, the simul-

taneous expression of many diverse antigen types might

also restrict the production of an effective immune response

against any one antigen type [10,64]. This might allow minor

types to sustain expression or to be re-expressed later in

infection when dominant antigen types are eliminated. Fur-

thermore, the simultaneous expression of many different

antigen types in the infection could act to perturb immune effi-

cacy or promote immunosuppression. Following the recent

ability unambiguously to identify stumpy forms in an infection

using PAD1 as a molecular marker [9], the capacity to identify

expressed antigen genes at the population level by deep

sequence expression analysis and the tools to activate or inhibit

stumpy formation via RNAi or gene overexpression [49],

the contributions to each of the different components of

the trypanosome infection dynamic are now accessible to

experimentation. This places us in an excellent position

to understand how trypanosomes contribute to their parasitae-

mia and the consequences of perturbing different components

in the context of acute and chronic infections.
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5. Contributions from the host
Unusually in pathogen biology, trypanosome research has

placed relatively little emphasis on the analysis of host contri-

butions to the context of infection. Largely, this has been

because antigenic variation and development in the host are

parasite-intrinsic factors. Nonetheless, while the humoral

response is clearly necessary to control each variant antigen-

expressing subpopulation, host contributions to parasite viru-

lence and the infection dynamic can be complex and host

species dependent, limiting experimental tractability outwith

the mouse model of infection. For example, populations of live-

stock and game animals continually exposed to trypanosome

infections over time may have the capacity to develop herd

immunity, restricting the ability of the circulating parasite

population to be transmitted to, and establish in, new hosts

[33]. Here, the development of unique antigenic lineages

derived from sequential mosaic formation over the course of

a chronic infection might play a key role in enabling the para-

site to establish in previously or currently infected hosts

[12,65]. Similarly, the rapid antigen switching characteristic

of field strains of parasites [66] (as occurs early in infections

enriched in slender forms) might allow the parasite to probe

the immune status of the host until a sufficiently novel antigen

type is expressed, allowing the parasite to establish [8]. The

diversity and flexibility of the metacyclic VSG repertoire

(the VSG expressed from a specialized subset of expression

sites activated in the tsetse fly salivary gland in the life cycle

stage pre-adapted for mammalian host infection) will also pro-

vide increased capacity to infect previously exposed hosts

exhibiting herd immunity [67,68]. The metacyclic VSG reper-

toire is somewhat isolated from the VSG repertoire used in

established bloodstream infections, with M-VSG expression

sites being shorter, generally lacking in ESAGs and with

few or no flanking repeats, limiting their recombination

with bloodstream expression sites. Although of more limited

diversity (there are around 12–20 M-VSG types [68,69]), the

short-term expression of these may limit their immune stimu-

lation, helping the parasite to establish and proliferate until it

can switch to expression of antigens from the much larger

bloodstream repertoire.

Beyond immunity, there is evidence that the control of tryp-

anosome infections has a strong host component. The most

obvious example of this interaction is the inability of most Afri-

can trypanosomes (including Trypanosoma brucei brucei,
T. congolense and T. vivax) to infect human and primate hosts

through the presence and expression in humans and primates

of trypanolytic serum factors, TLF1 and TLF2, each containing

the lytic ApoL1 component of high-density lipoprotein

[70]. Trypanosoma brucei rhodesiense and Trypanosoma brucei
gambiense have both evolved independent mechanisms to

evade killing in human serum through their expression of SRA

[71] and TgsGP1 [72,73], respectively, with a downregulation

of the haptoglobin–haemoglobin receptor also contributing to

T. b. gambiense resistance. Counter selection in some human

populations for mutations in ApoL1 generating a form able to

kill T. b. rhodesiense provides evidence of the evolutionary conflict

between humans and trypanosomes, with the trade-off in this

case being an increased risk of kidney disease [70,74].

Aside from the binary trait of human infectivity, there is

evidence for a genetic basis underlying factors that determine

the kinetics and duration of infection, in both parasite and

host populations. In mammalian hosts, there is a spectrum of
inherent susceptibility to trypanosome infections, ranging

from fully susceptible hosts that succumb and die after a short

infection timecourse to those defined as ‘trypanotolerant’, or

hosts that remain infected but do not develop the severe clinical

signs of their susceptible counterparts. At a population level,

the variation in these host factors will have a clear influence

on parasite transmission, as well as the usage and evolution

of VSG repertoires. Animal models of the trypanotolerance phe-

notype have long been recognized and are particularly well

defined in mice and cattle with respect to T. congolense infec-

tions, but the variation in infection outcome phenotype has

also recently been identified in human patients infected with

T. b. gambiense [75,76], with an infection status analogous to

trypanotolerance being characterized [77]. Indeed, genes, alleles

and pathways have been identified that are suggested to

contribute to host susceptibility in mice, cattle and humans

[75,76,78], although it is clear that the phenotype is a quantita-

tive trait in all species with contributions from multiple genes,

many of which remain to be identified.

The influence of parasite genotype on infection severity and

outcome is also profound, with some strains generating acute

and severe infections and others chronic infections with mild

symptoms—the classic example being infections in humans

with T. b. gambiense tending to be more chronic, whereas

T. b. rhodesiense infections are often very acute. Phenotypes relat-

ing to infection severity have been shown to be heritable in the

T. brucei model in mice, and similar to trypanotolerance in

the mammalian host these are quantitative traits with multiple

genes involved [79,80]. Therefore, it is clear that the interplay

between genes and pathways involved in host susceptibility

and trypanosome virulence will have a significant impact

upon the kinetics of infection, including parasitaemia, infection

profile and infection duration, all of which will interact with anti-

genic variation and differentiation to shape the within-host

dynamics of infection and onwards transmission.
6. The impact of co-infections and zoonosis
on trypanosome infection dynamics

African trypanosomes have the capacity to infect a wide range

of mammalian hosts (figure 4a). While T. b. rhodesiense and

T. b. gambiense can infect humans, these species also have

animal reservoirs, including livestock and game animals, that

can probably sustain the parasites in an infection cycle long-

term without human involvement. Similarly, with a relatively

high frequency of trypanosome infection in animal reservoirs

combined with the typically chronic nature of trypanosome

infections, the probability of mixed infections between dif-

ferent genotypes or species is significant [81]. This likely

generates the potential for evolutionary conflict, particularly

in the context of an operating quorum-sensing system. Thus,

if two different parasite genotypes exchange density sensing

signals, there is the theoretical possibility for selection to

occur, whereby the parasites either exploit or perturb each

other’s signals for their own advantage. This has the potential

to select parasites less able to respond to a density sensing

signal such that they come to dominate in a mixed infection,

or, hypothetically, to even produce a SIF mimic which prefer-

entially limits the proliferation of a competing strain without

affecting the producer strain. This conflict could operate to

increase the virulence of parasites when competing in a pool

of hosts where the parasites are circulating so that they sustain

http://rstb.royalsocietypublishing.org/
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Figure 4. Possible conflicts driving parasite virulence in different host settings. (a) The host range of different trypanosome species is shown, with T. b gambiense
and T. b. rhodesiense being human infective. Trypanosoma brucei gambiense can also infect livestock, though human infection is more frequently detected;
T. b. rhodesiense is most frequently found in livestock and game animals. Trypanosoma brucei brucei, T. congolense and T. vivax cannot infect humans but are
maintained in game animals and livestock. (b) Three scenarios where parasites are transmitted either to trypanotolerant or susceptible hosts, or humans. In
each scenario, potential outcomes are: (i) in trypanotolerant hosts, host suppression selects for increased virulence of the parasite population; (ii) parasites
might exhibit increased virulence once released from either host suppression in susceptible animals or competition from co-infecting strains; and (iii) in
humans, T. b. rhodesiense or T. b. gambiense are released from inter-species competition and may exhibit increased virulence.
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their numbers and maintain their probability of transmission.

If removed from the competitive environment—for example,

by infecting a new uninfected host, transitioning from a tryp-

anotolerant to a more susceptible host or moving from an

animal host to a human host (in the case of T. b. gambiense or

T. b. rhodesiense)—the consequence could be the appearance

of highly virulent forms that are more pathogenic to the host

(figure 4b). The associated trade-off is, potentially, reduced

capacity for transmission through their reduced production

of stumpy forms in that host [8], but the pivot point when

increased virulence and decreased transmission and vice versa
become strongly deleterious is unknown. Nonetheless, a con-

flict between virulence and transmission is inevitable either

with single or mixed infections, and variable between different

hosts, and there is considerable scope for the evolution of sys-

tems that provide misinformation to competitors. The extent of

the importance or stability of such selection pressures is

unclear, but may emerge as the molecular pathways control-

ling stumpy formation become better understood or the

molecular identity of SIF becomes known. This fascinating

area is currently unexplored, but the precedent from bacterial

intercellular communication systems provides evidence that

nuanced communication between different parasites circulat-

ing in the same host populations over considerable periods

of time will generate novel insights into the factors that con-

trol and optimize the infection dynamic of trypanosomes in

different mammalian hosts.

7. Therapeutic implications
Current drugs licensed to treat trypanosomiasis in humans and

livestock are old, have dangerous possible side effects, and

resistance is an increasing problem [82]. Consequently, many

initiatives to develop new drugs for trypanosomiasis are under-

way. Most focus on killing the proliferative slender form of the

parasite in the bloodstream, but there is also the prospect of
targeting parasite development and transmission [83]. For

example, depletion of the TOR4 protein in trypanosomes

drives the parasites to generate stumpy-like forms in an irre-

versible arrest [52]. If induced pharmacologically, this would

leave affected parasites subject to clearance by the immune

system, as would the targeting of other kinases operating

on the same pathway [84]. Similarly, molecules that drive

stumpy formation could be activated pharmacologically to

achieve the same outcome, eliminating the parasite population

from the bloodstream [83,84]. In an extension of this approach,

inducing parasites to differentiate from bloodstream forms

to tsetse midgut procyclic forms in the host bloodstream

would render the parasites susceptible to rapid killing by the

alternative pathway of complement, as VSG loss is an early

component of the differentiation response in the tsetse

midgut. An example of this would be targeting the tyrosine

phosphatase TbPTP1 whose pharmacological inactivation has

been shown to initiate the differentiation of stumpy forms to

procyclic forms in the absence of any other external trigger

[85]. Likewise, a protein kinase with the same phenotype

when ablated by RNAi has also been identified [86]. An import-

ant caveat of this approach is that the pharmacological effect

must be 100% efficient; otherwise, there will be the potential

for the selection of parasites less able to arrest as stumpy

forms and so with greater potential virulence [83]. Nonetheless,

as reduced stumpy formation could also reduce transmissibility

of any resistant parasites, this approach might provide an inter-

esting evolution-resistant therapeutic approach that could

provide a useful complement or adjunct to newly developed

trypanocidal therapies.

8. Perspectives
The capacity of trypanosomes to undergo antigenic variation

and development to specialized transmission stages has long

been recognized. However, while the molecular mechanisms

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140288

8

 on August 19, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
underlying antigenic variation have been studied in detail over

many years, only recently have events been analysed in parasite

lines that exhibit full developmental competence. This rep-

resents an important step forward, as understanding the

interplay between antigenic variation and density-dependent

growth control in the mammalian bloodstream is necessary

for the dynamics of chronic trypanosome infections to be recog-

nized. These processes are likely to reveal a complex and

detailed picture of how the trypanosome sustains itself long-

term in mammalian hosts and ensures transmission. Moreover,

the interplay between these components has potentially import-

ant evolutionary implications likely to have impact on the

virulence, transmissibility and epidemiology of trypanosome

infections in the field. With the analysis of developmentally

competent lines, the identification of molecular components

necessary for the control of antigenic variation and develop-

mental progression in the bloodstream, and accessibility of a

wider range of field parasite strains (and genome sequences),

new insight is likely to emerge rapidly. These insights can be

exploited therapeutically or the insight used to understand

how therapeutic interventions might fail, or resistance develop.

Importantly, the general principles uncovered are also likely to

be broadly applicable among a range of related and unrelated
pathogens. The interplay between virulence and transmission

is complex but fundamental in pathogen biology. Trypano-

somes provide one of the most tractable models to understand

how this interaction operates, and the implications of perturb-

ing different components on the longevity and spread of the

parasite in the field.
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