Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells

João Serôdio1, Sónia Cruz1, Paulo Cartaxana2 and Ricardo Calado1

1Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
2Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Lisboa 1749-016, Portugal

Kleptoplasty is a remarkable type of photosynthetic association, resulting from the maintenance of functional chloroplasts—the ‘kleptoplasts’—in the tissues of a non-photosynthetic host. It represents a biologically unique condition for chloroplast and photosynthesis functioning, occurring in different phylogenetic lineages, namely dinoflagellates, ciliates, foraminiferans and, most interestingly, a single taxon of metazoans, the sacoglossan sea slugs. In the case of sea slugs, chloroplasts from macroalgae are often maintained as intracellular organelles in cells of these marine gastropods, structurally intact and photosynthetically competent for extended periods of time. Kleptoplasty has long attracted interest owing to the longevity of functional kleptoplasts in the absence of the original algal nucleus and the limited number of proteins encoded by the chloroplast genome. This review updates the state-of-the-art on kleptoplast photophysiology, focusing on the comparative analysis of the responses to light of the chloroplasts when in their original, macroalgal cells, and when sequestered in animal cells and functioning as kleptoplasts. It covers fundamental but ecologically relevant aspects of kleptoplast light responses, such as the occurrence of photoacclimation in hospite, operation of photoprotective processes and susceptibility to photoinhibition. Emphasis is given to host-mediated processes unique to kleptoplastic associations, reviewing current hypotheses on behavioural photoprotection and host-mediated enhancement of photosynthetic performance, and identifying current gaps in sacoglossan kleptoplast photophysiology research.

1. Kleptoplasts

Present-day chloroplasts originated from an endosymbiotic process that started with the acquisition of a photosynthetic ancestral free-living cyanobacterium by a heterotrophic eukaryote, 1.2 billion years ago [1,2]. Despite this long and intimate coevolution, chloroplasts can be found today living intra-cellularly in organisms phylogenetically distant from the algal or plant cells in which they evolved. This is the case for chloroplasts from some macroalgal species that are ingested by animal herbivores but are not digested along with other cell components. The organelles resulting from this incomplete digestion, in this context termed ‘kleptoplasts’, remain structurally intact and photosynthetically competent for long periods, potentially for the entire lifespan of their new host [3,4]. Kleptoplasty is known to occur in a number of different phylogenetic lineages, such as dinoflagellates, ciliates, foraminiferans and metazoans [2,5]. The longest studied cases of kleptoplasty are those involving animals, all marine sacoglossan gastropod molluscs, most within the genus Elysia (figure 1). These sea slugs feed on macroalgae, either chlorophytes, rhodophytes or chromophytes, and sequester their chloroplasts in tubule cells of their digestive epithelium [3,6]. Despite the very small number of species known to participate in kleptoplasty, kleptoplastic organisms are not rare, and may even be cosmopolitan and form large populations, thus denoting a successful and well-adapted life form.
Kleptoplasty has raised considerable interest owing to the longevity of functional kleptoplasts in the absence of the original algal nucleus. In algae and plants, the processes required for chloroplasts to function are known to depend heavily on the continuous production, repair and replacement of plastid components, such as pigments, proteins and enzymes [7,8]. These processes involve intercompartmental crosstalk between the plastid and the nucleus, through both anterograde (nucleus-to-plastid) and retrograde (plastid-to-nucleus) signalling [9]. Furthermore, many of the photosynthetic proteins and enzymes required for general maintenance of the photosynthetic apparatus are nuclear-encoded and targeted to the chloroplast, with the expression of plastid-encoded genes also regulated by nuclear-encoded proteins [10]. Additionally, most of the metabolic machinery that equipped the ancestral cyanobacterium progenitor from which chloroplasts descended was lost during evolution inside their eukaryotic host, together with a large part of the original genome, which was transferred to the nucleus of the heterotrophic host cell [11]. Ironically, it is this ‘incomplete’ photosynthetic plastid that finds itself inside a new, unfamiliar host, for which evolution has not prepared it for—rather on the contrary. Modern chloroplasts may thus be expected to be largely unable to lead an autonomous life without the cell nucleus, making kleptoplasty in animal cells particularly intriguing as plastids and animal cells are phylogenetically unrelated and the latter were never photosynthetic [1].

Crosstalk between organelles is particularly important in the case of the chloroplast and nucleus, as frequent changes in the light environment require a continuous regulation of responses to maintain optimal photosynthetic function [10,12]. These include a range of processes involving short- and long-term photoacclimation and the efficient operation of photoprotective mechanisms against photoinhibition.

Here, we intend to update the state-of-the-art on kleptoplast photophysiology, centred on the comparative analysis of light responses of chloroplasts in their original macroalgal cells and when functioning as kleptoplasts, with emphasis on metazoan host-mediated processes affecting light exposure and photosynthetic performance.

2. Photoacclimation

Responses to changes in light environment primarily involve photoacclimation, phenotypic adjustments in various components of the photosynthetic apparatus to regulate excitation pressure, and maintaining carbon fixation while avoiding photo-oxidative stress. In eukaryotic algae, photoacclimation includes a range of processes such as changes in cellular content of photosynthetic reaction centres (RCI and RCII), photosynthetic and photoprotective pigments, photosynthetic unit number and size, photosystem II (PSII)/photosystem I stoichiometry, as well as protein degradation and de novo protein synthesis that regulate the amount of antennae proteins and the content and activity of RuBisCO and other enzymes [12].

The question of whether kleptoplasts are able to undergo photoacclimation in hospite is particularly relevant because several of the processes involved in photoacclimation require extensive expression of nuclear-encoded genes [2,4]. At present, available evidence is still based on a small number of associations but does not indicate the occurrence of photoacclimation in

Figure 1. The kleptoplast-bearing sacoglossan sea slugs (a) Elysia viridis, feeding on Codium tomentosum, and (b) Elysia chlorotica, feeding on Vaucheria litorea, and showing the opened parapodia (c, d, respectively). Courtesy of C. Brandão (a), A. Kharlamov (c), M. E. Rumpho and K. N. Pelletreau (b, d).
kleptoplasts. For the association *Elysia viridis/Codium fragile*, no differences in pigment content (normalized to chlorophyll *a*) were found between host and algal prey collected from the wild [13]. Also, for the case of *E. viridis/Codium tomentosum*, no changes in light-response curves (LC) of photosynthetic activity consistent with photoacclimation were observed when recently collected kleptoplast-bearing individuals were exposed to contrasting light regimes [14].

The absence of photoacclimation in kleptoplasts is also consistent with the strong association between LCs of relative electron transport rate (rETR) of algal food and corresponding kleptoplastic hosts. A compilation of all published results [13,15–17] and original data (S. Cruz, T. Santos, P. Cartaxana, R. Calado, J. Serôdio, unpublished; http://dx.doi.org/10.6084/m9.figshare.783888) showed that despite the large range in algal prey photoacclimation state (as denoted by the light-response curve photoacclimation parameter *E*_k, ranging from 28.7 to 356.0 μmol m^{−2} s^{−1}), LC parameters of the macroalgae and kleptoplasts in their animal host cells were significantly correlated (figure 2). Significant correlations were found for parameters related to light-limited (*α*, given by the initial slope of the LC; figure 2a) and light-saturated photosynthesis (rETR_{max}, the maximum rETR reached in the LC, figure 2b) as well as for *E*_k (figure 2c), indicating that a significant proportion of the variability of the light response of the kleptoplasts could be explained by the light response of the macroalga’s chloroplasts. The lowest *E*_k values were found for *E. viridis* and *C. tomentosum*, consistent with the low-light environment inside the macroalga’s dark fronds. By contrast, the highest *E*_k values were found for the light and optically thin *Acetabularia acetabulum* and its herbivore *Elysia timida*.

The association found between the LCs of the host and its algal food shown in this meta-analysis suggests that the kleptoplastic association may also be transiently beneficial for the functioning of the sequestered plastid, despite their shortened lifespan. In fact, a number of recent studies have shown that many non-photosynthetic hosts are able to enhance the photosynthetic release of non-kleptoplastic plastids after filling their digestive cells with functional chloroplasts. Dotted lines indicate the 1 : 1 ratio. Specimens collected as in Cruz et al. [18], in July and November 2012. LCs measured and parameters estimated following Vieira et al. [14].

3. Host-mediated enhanced photosynthetic performance

Since its beginning, research on kleptoplast photosynthesis has predominantly focused on the provision of photosynthates to the host [24–26]. It seems that host animals benefit from harbouring kleptoplasts, by obtaining a significant amount of carbon from photosynthesis (up to 60% of the carbon input was estimated to be derived from kleptoplast photosynthesis, for the *Oxynoe viridis/Clavera longifolia* association [25]). Furthermore, the assimilation of nitrogen was seen to be mediated by kleptoplasts, for *E. viridis/C. fragile* [27]. However, evidence is accumulating that the kleptoplastic association may also be transiently beneficial for the functioning of the sequestered plastid, despite their shortened lifespan. In fact, a number of recent studies have shown that the photosynthetic performance of kleptoplasts appears to be superior to corresponding chloroplasts within their original algal cells [13,15,16]. This agrees with the recognition that many non-photosynthetic hosts are able to enhance the photosynthetic release of non-kleptoplastic plastids after filling their digestive cells with functional chloroplasts. Dotted lines indicate the 1 : 1 ratio. Specimens collected as in Cruz et al. [18], in July and November 2012. LCs measured and parameters estimated following Vieira et al. [14].

Figure 2

Linear relationship between published LC parameters (*a*, *b*) rETR_{max} and (*c*) *E*_k measured in chloroplasts (intact algae) and corresponding kleptoplasts (inside the animal host). *Elysia viridis* and *E. timida* are long-term retention species (functional kleptoplasts for more than 8 days), whereas *Thuridilla hopei* is a short-term retention species (kleptoplasts functional up to 8 days) [17]. The data for *E. viridis/C. fragile* [13] are the average of the values measured after the sea slugs filled their digestive cells with functional chloroplasts. Dotted lines indicate the 1 : 1 ratio. Specimens collected as in Cruz et al. [18], in July and November 2012. LCs measured and parameters estimated following Vieira et al. [14].
endosymbionts [5]. This tendency is also evident when analyzing available datasets comparing fluorescence LC parameters measured in the host and the algae, summarized in figure 2. While no marked differences were found for light-limited photosynthesis (α; regression slope ≈ 1; figure 2a), most rETR$_m$ values (with the exception of *Thuridilla hopei* / unidentified algae) were significantly higher for the kleptoplast-bearing host than for the algal prey (slope > 1; figure 2b), supporting that the host somehow favours light-saturated photosynthesis of sequestered plastids.

In this context, it is important to note that the direct comparison of fluorescence data measured on sea slugs and macroalgae must be interpreted carefully. This is because fluorescence LCs measured on samples with markedly different optical properties may be strongly affected by artefactual effects causing the overestimation of LC parameters independently of the inherent photophysiological response [28]. Depth-integration effects are illustrated in figure 3, comparing LCs measured on intact (depth-integration effects present) *E. viridis* (‘Elysia’) and *C. tomentosum* (‘Codium’), and on corresponding optically thin samples (depth-integration effects minimized), *E. viridis* individuals placed in a 0.5 mm deep concavity microscope slide and covered by a coverslip, and a slurry of *C. tomentosum* (‘Elysia-inherent’ and ‘Codium-inherent’, respectively). Mean values of five replicates. Vertical bars represent 1 s.d. Specimens collected as in Cruz et al. [18]. LCs measured following Vieira et al. [14].

4. Photoprotection and photoinhibition

Photoprotective mechanisms are necessary to deal with light energy absorbed in excess of that used by photochemical pathways and carbon fixation [29,30]. They are crucial in preventing the accumulation of reactive oxygen intermediates and minimizing photodamage to the photosynthetic apparatus [7]. For kleptoplasts, efficient photoprotection can be expected to be of major importance. On the one hand, plastids may be exposed to a new light environment, because of differing light attenuation properties of the host’s tissues and its active motility in high light habitats, to which they may not be acclimated. On the other hand, damage caused by inefficient photoprotection may be harder to overcome and even aggravated in the absence of a fully functional PSII protein repair system. Recovery from photoinhibition relies heavily on repair and *de novo* synthesis of PSII proteins, for example the subunit D1, as damage from reactive oxygen species (ROS) occurs not only through direct inactivation of the PSII proteins, but mostly by inhibiting the repair of photodamaged components [7]. While synthesis of D1 and other PSII proteins were observed in kleptoplasts of the *E. chlorotica*/*V. litorea* association [21], this outstanding capacity does not seem to be widespread. For *E. viridis*/*C. tomentosum*, exposure to moderate light levels of only 140 μmol m$^{-2}$ s$^{-1}$ were found to cause a major decrease in kleptoplast longevity (on average, from 30.8 to 10.2 days), consistent with light dose-dependent photoinhibition [14]. Despite its importance, little is known on the operation of photoprotective mechanisms in kleptoplasts (reviewed in [28]). The
Kleptoplasty is an exciting research topic, as it represents a natu-

5. Host-mediated photoprotection?

Kleptoplastic sea slugs have long been reported to display behavio-

6. Currents gaps: oxidative stress and reactive oxygen species signalling

kleptoplasts date from more than 40 years ago (coincidentally, focused on photosynthesis [24]), this research field is still in a relatively early stage of development when compared with other animal–alga symbioses, namely corals. Recent research has centred on the molecular basis explaining the plastid long-term maintenance in the absence of algal nuclei, with the controversial hypothesis of horizontal transfer of genes from the alga nucleus to the host having received considerable attention (mostly using the association E. chlorotica/V. litorea as a biological model [37]). Most recent studies on kleptoplast photophysiology have focused on chloroplast longevity (reviewed in [28]), while fundamental photosynthetic processes that are well known in many other groups are still poorly under-

References

