Almost since the discovery of long-term potentiation (LTP) in the hippocampus, its locus of expression has been debated. Throughout the years, convincing evidence has accumulated to suggest that LTP can be supported either presynaptically, by an increase in transmitter release, or postsynaptically, by an increase in \( \alpha \)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor number. However, whereas postsynaptic enhancement appears to be consistently obtained across studies following LTP induction, presynaptic enhancement is not as reliably observed. Such discrepancies, along with the failure to convincingly identify a retrograde messenger required for presynaptic change, have led to the general view that LTP is mainly supported postsynaptically, and certainly, research within the field for the past decade has been heavily focused on the postsynaptic locus. Here, we argue that LTP can be expressed at either synaptic locus, but that pre- and postsynaptic forms of LTP are dissociable phenomena mediated by distinct mechanistic processes, which are sensitive to different patterns of neuronal activity. This view of LTP helps to reconcile discrepancies across the literature and may put to rest a decades-long debate.

1. Long-term potentiation expression at the pre- and postsynaptic locus is mechanistically distinct

While the locus of long-term potentiation (LTP) expression is disputed, the locus of LTP induction is widely accepted to be postsynaptic and dependent on \( N \)-methyl-\( D \)-aspartate receptors (NMDARs). Blockade of NMDARs is often reported to inhibit LTP induction \([1]\), and Ca\(^{2+}\) influx from the receptor has been causally linked to the insertion of postsynaptic \( \alpha \)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) \([2]\). NMDARs, however, are not always required for the induction of LTP. In 1990, Grover & Teyler \([3]\) reported that LTP could be induced in NMDAR blockade (50 \( \mu M \) \( 2R \)-amino-5-phosphonovaleric acid (APV)) with 200 Hz, but not 100 Hz, tetanic stimulation; potentiation was not simply a result of residual NMDAR activity during high-frequency stimulation as it was induced with similar magnitude under a more potent receptor blockade (100 \( \mu M \) APV + 20 \( \mu M \) MK-801) \([4]\) but see \([5]\). LTP obtained in NMDAR blockade was later shown to require the activation of L-type voltage-gated calcium channels (L-VGCCs) \([6–11]\). Others subsequently reported that a similar form of potentiation could be obtained (i) when presynaptic stimuli (less than or equal to 0.1 Hz) were delivered in the presence of voltage-gated potassium channel blockers \([6,8,9,11–13]\), (ii) when tetanic stimulation (25–100 Hz) occurred in the absence of gamma aminobutyric acid A (GABA\(_A\))-mediated inhibition \([14,15]\) and (iii) when presynaptic stimuli (1–2 Hz) were paired with strong postsynaptic depolarization \([7,16]\); by contrast, no potentiation was induced by presynaptic stimulation in the absence of postsynaptic depolarization or by postsynaptic depolarization in the absence of presynaptic stimulation \([4,17]\). These findings suggest that the induction of L-VGCC-dependent LTP requires presynaptic activity to coincide with strong postsynaptic depolarization, and that given strong postsynaptic depolarization, LTP can be induced even with very low-frequency (less than or equal to 0.1 Hz) presynaptic stimulation. Although it may be thought that the stimulation paradigms used to obtain L-VGCC-dependent LTP represent artificial experimental conditions that would be unlikely to occur \textit{in vivo}, several groups have also shown that L-VGCC-dependent LTP can be induced by theta-burst stimulation \([10,18–21]\), which is thought to emulate...
physiological patterns of hippocampal activity. Moreover, the finding that inhibition of L-VGCCs augments the impairment to spatial memory caused by NMDAR antagonists, suggests that L-VGCCs support some aspects of learning and memory in vivo, independent of NMDARs [22–24].

The locus of expression of L-VGCC-dependent LTP appears to be presynaptic [16,20,25] (but see [4]). The most compelling evidence comes from Bayazitov et al. [20], who used synaptophospholourins to optically monitor activity-driven changes in presynaptic function [20]. Synaptophospholourin is a pH-sensitive variant of green fluorescent protein that has been fused to the luminal domain of the vesicular protein, VAMP2. The fluorophore is quenched within the acidic lumen of the vesicle and fluoresces upon vesicular exocytosis, when it is exposed to the pH-neutral extracellular environment. Bayazitov et al. [20] demonstrated that presynaptic function was enhanced following either theta-burst or 200 Hz stimulation and that such increases could only be abolished with the L-VGCC antagonist, nitrendipine, but not with the NMDAR antagonist, APV; the resilience of presynaptic enhancement to APV is also evident in several studies using FM dyes to monitor presynaptic function [18,26,27]. Moreover, in APV, a similar fold potentiation was observed both for the presynaptic pHlourin response and the recorded field potential, suggesting that LTP was exclusively expressed presynaptically under NMDAR blockade. Conversely, tetanus in nitrendipine resulted in an enhancement of the recorded field potential but not in the presynaptic pHlourin response, suggesting that under L-VGCC block, LTP was exclusively expressed postsynaptically. Such findings strongly suggest that pre- and postsynaptic forms of LTP are mechanistically distinct, with the former requiring L-VGCC activation and the latter requiring NMDAR activation.

The finding that presynaptic change can occur independently of NMDAR activation appears to be at odds with findings from other laboratories, including our own, that demonstrate that NMDAR blockade abolishes, or at least reduces, presynaptic enhancement [18,20,26–28]. It is, however, important to recognize that the NMDAR, in addition to acting as a Ca\(^{2+}\) source for the spine, is also a potent source of depolarization for the cell and dendrite. The NMDAR is far more permeable to Na\(^{+}\) than it is to Ca\(^{2+}\), and the activation of the receptor facilitates somatic and dendritic spiking [14,29–32]. Although postsynaptic enhancement depends on NMDARs as a source of Ca\(^{2+}\), postsynaptic enhancement, given its dependence on L-VGCC activation, may only rely on NMDARs as a source of postsynaptic depolarization. This would explain why NMDAR antagonists abolish presynaptic potentiation during standard 100 Hz, but not during 200 Hz or theta-burst stimulation protocols, which are more effective at producing postsynaptic depolarization via AMPAR activation. It is important to note that presynaptic potentiation can also be obtained when single presynaptic stimuli are paired with postsynaptic depolarization, which rules out any specific requirement of high-frequency presynaptic activity for the enhancement of presynaptic strength [16,33]. Thus, pre- and postsynaptic forms of LTP may well be mechanically dissociable and differentially depend on L-VGCCs and NMDARs for Ca\(^{2+}\) influx.

2. Reconciling the literature

The inconsistency with which presynaptic changes are reported across laboratories has cast doubt as to whether the presynaptic terminal is a locus of LTP expression. However, given the differential importance of L-VGCC activation in pre- and postsynaptic forms of LTP, the failure of some laboratories to report presynaptic enhancement might depend on the nature of the experimental conditions under which LTP is induced. L-VGCCs are activated by strong depolarization and are susceptible to desensitization during periods of prolonged depolarization (more than 100 ms) [34,35]. As such, we reason that the magnitude and duration of postsynaptic depolarization during LTP induction determines the extent of L-VGCC activation, and thus the likelihood that LTP has a presynaptic component of expression. To test this idea, we examined past studies to see whether a correlation exists between the stimulation protocol used to induce LTP and the likelihood of obtaining presynaptic enhancement. To circumvent bias, our literature search was guided by past reviews to locate LTP expression [2,36–42], including those predominantly supporting either a pre- [39] or postsynaptic view [2,36,37]. Collectively, the studies included in our analysis employed a variety of techniques to investigate the locus of LTP expression at Schaffer-collateral synapses, including the use of: the NMDAR-component of synaptic potentials, glial transport current, use-dependent-receptor blockers to estimate glutamate release probability, paired pulse ratios or brief high-frequency bursts to monitor changes in short-term plasticity, and finally, FM dyes, Ca\(^{2+}\) indicators or pHlours to optically monitor presynaptic function. We excluded studies using coefficient of variation analysis, minimal stimulation or paired recordings, principally because the unmasking of postsynaptically silent synapses can masquerade as presynaptic enhancements using these techniques. Postsynaptic unmasking contributes significantly to LTP expression, especially during the first few weeks of postnatal development, when synaptic plasticity is most commonly studied [43]. It is therefore difficult to judge whether changes in coefficient of variation analysis or in synaptic failure rate following LTP induction in young tissue are attributable to the enhancement of pre- or postsynaptic function. Moreover, results from minimal stimulation are potentially confounded by activity-dependent changes in axonal excitability for experiments conducted at room temperature ([44] but see [45]).

We examined a total of 38 studies, which assess LTP expression across 53 experimental conditions (table 1). Presynaptic changes were reported in 23 of the 38 studies and in 23 of the 53 experimental conditions. LTP was generally induced either by brief, high-frequency tetanic stimulation (50–200 Hz) or by a pairing protocol, in which lower frequency stimulation (generally less than 2 Hz but ranging between 0.2 and 100 Hz) was delivered while voltage-clamping the postsynaptic neuron between ~10 and 10 mV, often for tens of seconds. From our meta-analysis, we find that LTP is significantly more likely to have a presynaptic component of expression when induced by tetanic stimulation (20 of 35 conditions) rather than by pairing (3 of 18 conditions) (X\(^2\) = 7.92; p = 0.005). LTP induced by pairing, rather than tetanic stimulation, also appeared to be insensitive to L-VGCC blockers [7,10,18–20]. Perhaps, one reason for these findings is that prolonged periods of depolarization that are involved in pairing protocols, although effective at relieving the Mg\(^{2+}\) block of NMDARs, may desensitize L-VGCCs; the resulting LTP is therefore insensitive to L-VGCC antagonists and lacks a presynaptic component of expression. That said, pairing protocols can elicit L-VGCC-dependent LTP when postsynaptic depolarization consists of several brief, rather than one long,
Table 1. Studies examining the presynaptic expression of LTP. NMDAR, NMDA-receptor-mediated component of synaptic response; SRP, synaptic refractory period; STP, short-term plasticity; GTC, glial transport current; PPR, paired pulse ratio; DNQX, 6,7-dinitroquinoxaline-2,3-dione; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Method</th>
<th>Protocol</th>
<th>%LTP</th>
<th>Δpre</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muller &amp; Lynch [46]</td>
<td>NMDAR</td>
<td>(4 at 100 Hz) × 5 at 10 Hz</td>
<td>163</td>
<td>yes (119%)</td>
<td>LTP induced in low Mg&lt;sup&gt;2+&lt;/sup&gt;</td>
</tr>
<tr>
<td>Muller et al. [47,48]</td>
<td>NMDAR</td>
<td>(4 at 100 Hz) × 5 at 10 Hz</td>
<td>130</td>
<td>no</td>
<td>LTP induced in low Mg&lt;sup&gt;2+&lt;/sup&gt;</td>
</tr>
<tr>
<td>Muller et al. [49]</td>
<td>NMDAR</td>
<td>(4 at 100 Hz) × 10 at 5 Hz</td>
<td>148</td>
<td>no</td>
<td>NMDAR assessed using bursts (4 at 100 Hz)</td>
</tr>
<tr>
<td>Bashir et al. [50]</td>
<td>NMDAR</td>
<td>25 at 100 Hz</td>
<td>143</td>
<td>yes (143%)</td>
<td>LTP induced in CNQX</td>
</tr>
<tr>
<td>Asztely et al. [51]</td>
<td>NMDAR</td>
<td>10 at 50 Hz</td>
<td>114</td>
<td>yes (114%)</td>
<td>LTP induced in low Mg&lt;sup&gt;2+&lt;/sup&gt; and CNQX</td>
</tr>
<tr>
<td>Clark &amp; Collingridge [52]</td>
<td>NMDAR</td>
<td>100 at 100 Hz</td>
<td>160</td>
<td>yes (160%)</td>
<td></td>
</tr>
<tr>
<td>Kullmann et al. [53]</td>
<td>NMDAR</td>
<td>(5 at 100 Hz) × 50 at 5 Hz</td>
<td>150</td>
<td>yes (120%)</td>
<td></td>
</tr>
<tr>
<td>Mainen et al. [54]</td>
<td>NMDAR</td>
<td>(50 – 100 Hz) × 1–3</td>
<td>265</td>
<td>no</td>
<td>GluR2 knockout mouse</td>
</tr>
<tr>
<td>Muller &amp; Lynch [55]</td>
<td>PPR</td>
<td>(4 at 100 Hz) × 10 at 5 Hz</td>
<td>150</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Zaitsevsky &amp; Nicol [56]</td>
<td>PPR</td>
<td>(100 at 100 Hz) × 4 at 0.1 Hz</td>
<td>163</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Foster &amp; McNaughton [57]</td>
<td>PPR</td>
<td>(8 at 400 Hz) × 4</td>
<td>125</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Schulz et al. [58]</td>
<td>PPR</td>
<td>(50 at 100 Hz) × 10 at 5 Hz × 1–6</td>
<td>179</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Schulz [59]</td>
<td>PPR + other occlusion/rescue experiments</td>
<td>(50 at 100 Hz) × 10 at 5 Hz × 1–6</td>
<td>250</td>
<td>yes</td>
<td>see reference for more details on occlusion/rescue exprs.</td>
</tr>
<tr>
<td>Kleshevnikov et al. [60]</td>
<td>PPR</td>
<td>100 at 100 Hz (strong)</td>
<td>280</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Volianskis &amp; Jensen [61]</td>
<td>PPR</td>
<td>(4 at 100 Hz) × 10 at 5 Hz</td>
<td>160</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Pananceau et al. [62]</td>
<td>STP and PPR</td>
<td>(25 at 200 Hz) × 5</td>
<td>214</td>
<td>no</td>
<td>STP assessed w/5 at 20 and 50 Hz</td>
</tr>
<tr>
<td>Yasui et al. [63]</td>
<td>STP</td>
<td>50 – 100 at 100 Hz</td>
<td>144</td>
<td>yes</td>
<td>STP assessed w/10 at 10 Hz</td>
</tr>
<tr>
<td>Volianskis et al. [64]</td>
<td>STP</td>
<td>(4 at 100 Hz) × 10 at 5 Hz</td>
<td>180</td>
<td>yes</td>
<td>STP assessed w/7 at 12.5 Hz; decayed 2 h post-tetanus</td>
</tr>
<tr>
<td>Luscher et al. [65]</td>
<td>GTCs</td>
<td>(50 at 50 Hz) × 4 at 0.05 Hz OR (100 at 50 Hz) × 4 at 0.05 Hz</td>
<td>159</td>
<td>no</td>
<td>LTP induced in CNQX</td>
</tr>
<tr>
<td>Diamond et al. [66]</td>
<td>GTC</td>
<td>(100 at 50 Hz) × 4 at 0.05 Hz</td>
<td>179</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Johnstone &amp; Raymond [67,68]</td>
<td>FM-dye</td>
<td>(5 at 100 Hz) × 10 at 5 Hz × 1</td>
<td>130</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Johnstone &amp; Raymond [67,68]</td>
<td>FM-dye and PPR</td>
<td>(5 at 100 Hz) × 10 at 5 Hz × 4 at 0.0033 Hz</td>
<td>180</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Johnstone &amp; Raymond [67,68]</td>
<td>FM-dye and PPR</td>
<td>(5 at 100 Hz) × 10 at 5 Hz × 8 at 0.0033 Hz</td>
<td>184</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

(Continued.)
<table>
<thead>
<tr>
<th>Citation</th>
<th>Method</th>
<th>Protocol</th>
<th>%LTP</th>
<th>Δpre</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zakharenko et al. [18,19]</td>
<td>FM-dye</td>
<td>50 at 50 Hz</td>
<td>129</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM-dye</td>
<td>(100 at 100 Hz) × 4 at 0.05 Hz</td>
<td>154</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM-dye</td>
<td>(40 at 200 Hz) × 10 at 0.2 Hz</td>
<td>185</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM-dye</td>
<td>(4 at 100 Hz) × 5 at 5 Hz × 3 at 0.0033 Hz</td>
<td>210</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Bayazitov et al. [20]</td>
<td>pHlourin</td>
<td>(40 at 200 Hz) × 10 at 0.2 Hz</td>
<td>200</td>
<td>yes</td>
<td>pHlourin response assessed w/50 at 10 Hz</td>
</tr>
<tr>
<td></td>
<td>pHlourin</td>
<td>(4 at 100 Hz) × 5 at 5 Hz × 3 at 0.0033 Hz</td>
<td>220</td>
<td>yes</td>
<td>pHlourin response assessed w/50 at 10 Hz</td>
</tr>
<tr>
<td>Emptage et al. [28], Ward et al. [69]</td>
<td>Ca^{2+} imaging and PPR</td>
<td>(20 at 100 Hz) × 3 at 0.75 Hz</td>
<td>265</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Enoki et al. [33]</td>
<td>Ca^{2+} imaging</td>
<td>(20 at 100 Hz) × 3 at 0.75 Hz OR 100 at 0.03 Hz, each paired with three postsynaptic spikes</td>
<td>199</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pairing-induced LTP</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perkel &amp; Nicoll [70]</td>
<td>NMDAR</td>
<td>(100 at 100 Hz) × 2 at 0.1 Hz</td>
<td>175</td>
<td>no</td>
<td>LTP induced in CNQX</td>
</tr>
<tr>
<td></td>
<td>NMDAR</td>
<td>40 at 2 Hz; 0 mV</td>
<td>190</td>
<td>no</td>
<td>LTP induced in CNQX</td>
</tr>
<tr>
<td>Kauer et al. [71]</td>
<td>NMDAR</td>
<td>50 at 0.5–0.7 Hz; 30 mV</td>
<td>165</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NMDAR</td>
<td>19 at 2 Hz; 0 mV</td>
<td>150</td>
<td>no</td>
<td>LTP induced in CNQX</td>
</tr>
<tr>
<td></td>
<td>NMDAR</td>
<td>(100 at 100 Hz) × 2 at 0.05 Hz; 0 mV</td>
<td>180</td>
<td>no</td>
<td>LTP induced in CNQX</td>
</tr>
<tr>
<td></td>
<td>NMDAR</td>
<td>(100 at 100 Hz) × 2 at 0.05 Hz; 0 mV</td>
<td>152</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Plant et al. [72]</td>
<td>NMDAR</td>
<td>50–100 at 0.5–2 Hz; −10 to 0 mV</td>
<td>155</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Kullmann et al. [53]</td>
<td>NMDAR</td>
<td>120 at 2 Hz; 0 mV</td>
<td>162</td>
<td>yes</td>
<td>(110%)</td>
</tr>
<tr>
<td></td>
<td>MK801</td>
<td>100 at 100 Hz × 2; 0 mV</td>
<td>162</td>
<td>yes</td>
<td>use-dependent block</td>
</tr>
<tr>
<td></td>
<td>MK801</td>
<td>40 at 2 Hz; 0 mV</td>
<td>158</td>
<td>no</td>
<td>use-dependent block</td>
</tr>
<tr>
<td>Manabe &amp; Nicoll [73]</td>
<td>PPR</td>
<td>80 at 2 Hz; 0 mV</td>
<td>178</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Manabe et al. [74]</td>
<td>PPR</td>
<td>100 at 100 Hz; 0 mV</td>
<td>178</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Palmer et al. [45]</td>
<td>PPR</td>
<td>40 at 0.5 Hz; 0 mV</td>
<td>234</td>
<td>yes</td>
<td>P6 rodent slices</td>
</tr>
<tr>
<td></td>
<td>PPR</td>
<td>40 at 0.5 Hz; 0 mV</td>
<td>223</td>
<td>no</td>
<td>P12 rodent slices</td>
</tr>
<tr>
<td>Hjelmstad et al. [75]</td>
<td>SRP</td>
<td>100 at 1 Hz; 0 mV</td>
<td>200</td>
<td>no</td>
<td>SRP probed w/2 at 250 Hz</td>
</tr>
<tr>
<td></td>
<td>SRP</td>
<td>(100 at 100 Hz) × 2 at 0.67 Hz; 0 mV</td>
<td>200</td>
<td>no</td>
<td>SRP period probed w/2 at 250 Hz</td>
</tr>
<tr>
<td></td>
<td>4-AP occlusion</td>
<td>(100 at 100 Hz) × 2 at 0.67 Hz × 5; 0 mV</td>
<td>260</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Selig et al. [78]</td>
<td>STP</td>
<td>120 at 1 Hz; −10 mV</td>
<td>286</td>
<td>no</td>
<td>STP assessed w/7 at 25 Hz</td>
</tr>
</tbody>
</table>

*a* Blank spaces represent additional experiments conducted by same study cited in the row above. Studies with very similar experimental conditions have been combined and are represented in one row.

*b* % LTP is expressed as % of baseline measured 30 min post-tetanus. % LTP was estimated from graphs in studies where LTP magnitude was not mentioned in the text. In instances where a study conducted multiple experiments under similar conditions, % LTP was taken as the average across experiments.

*c* Quantitative changes in presynaptic efficacy were reported in some studies and are shown in brackets where appropriate.
voltage step; this protocol may more effectively activate L-VGCCs without triggering channel desensitization [7].

Tetanic stimulation did not always produce presynaptic changes. However, given the high voltage-threshold property of L-VGCCs, the likelihood of generating presynaptic potentiation would depend on the ability for tetanus to produce sufficiently strong postsynaptic depolarization. Consistent with this, Zakharenko et al. [18,19] and Bayazitov et al. [20] demonstrated, using optical techniques, that theta-burst or 200 Hz stimulation generated an L-VGCC-sensitive form of LTP involving robust presynaptic enhancements, whereas no such L-VGCC-sensitive enhancements were induced by 50 or 100 Hz stimulation [18–20,25]. As stated previously, the enhanced probability of obtaining presynaptic changes under high-frequency stimulation probably reflects the requirement for strong postsynaptic depolarization rather than for high-frequency presynaptic activity per se [6–11,16,33]. Other experimental conditions may also influence the level of postsynaptic depolarization achieved during tetanus including the temperature of the preparation, the divalent cation concentration, GABAR receptor antagonists, as well as the intensity and duration of presynaptic stimulation used during tetanus, all of which vary considerably across studies. As such, tetanic stimulation might preferentially generate presynaptic enhancement under some experimental conditions, but not others.

We further examined whether the magnitude of LTP generated by tetanic stimulation reflects the likelihood that LTP is associated with presynaptic enhancement, regardless of the actual pattern of stimulation and the experimental conditions under which it is induced. We reason that stimulation achieving sufficiently strong depolarization would recruit both pre- and postsynaptic components of LTP, and therefore generate larger enhancements in synaptic activity. Consistent with this notion, we find that the average amplitude of LTP was 194.59 ± 9.62% (n = 17) when it was associated with presynaptic enhancement, but only 153.50 ± 7.77% (n = 12) when it was not (U = 34; p = 0.003) (figure 1). Moreover, presynaptic enhancement was reported in 91.67% of experiments (n = 11/12) that produced LTP with a magnitude greater than or equal to 180% (dashed line) of experiments (n = 6/17) that produced LTP with a lower magnitude (X² = 9.21; p = 0.002). Only experiments that induced LTP using tetanic stimulation under standard experimental conditions were included in our analysis (29 of 35 conditions); as such, experiments in which LTP was induced in AMPAR blockade or in GluR2 knockout animals were excluded (6 of 35 conditions). Collectively, these findings demonstrate that LTP at the presynaptic terminal is not some enigmatic and sporadic process, but a predictable form of plasticity whose induction is likely to depend on the levels of postsynaptic depolarization achieved during tetanus.

3. Nitric oxide as a retrograde messenger

LTP at the presynaptic locus is dependent on postsynaptic depolarization. How this event is signalled is not known, but it is thought to depend on a postsynaptically generated retrograde signal. Unfortunately, the failure to identify a convincing messenger has cast doubt on a presynaptic locus of LTP. Although several putative messengers have been proposed [25,77,78], the most commonly investigated candidate has been, and continues to be, nitric oxide (NO). NO was first suggested as a retrograde signal in plasticity by Schuman & Madison [79] and O’Dell et al. [80], who demonstrated that inhibition of NO signalling impaired the induction of LTP, a finding that had been previously reported by Bohme et al. [81]. Similar impairments in LTP could be achieved by scavenging extracellular NO using haemoglobin, suggesting that NO synthesis is activity dependent and that both neuronal and endothelial variant of nitric oxide synthase (NOS) are expressed postsynaptically in CA1 pyramidal neurons [84], and that genetic deletion of NOS [85–87], or pharmacological inhibition of NOS in vivo [88], impairs LTP at Schaffer-collateral synapses.

Perhaps, the most compelling evidence for NO as a retrograde messenger came in 1996, from Arancio et al. [89]. In their study, the authors demonstrated that LTP induction was blocked by (i) extracellular NO scavengers, (ii) intracellular NO scavengers applied to either pre- or postsynaptic neurons and (iii) injection of NOS inhibitors in the post-, but not pre-, synaptic neuron. They further showed (i) that photolytic release of NO could generate LTP when paired with presynaptic stimulation (ii) and that potentiation could be blocked by extracellular NO scavengers when NO was photoreleased in the post-, but not presynaptic compartment. Their findings strongly suggest that extracellular diffusion of postsynaptically synthesized NO into active presynaptic terminals is both necessary and sufficient for the induction of LTP.

---

**Figure 1.** LTP magnitude predicts a presynaptic component of expression. LTP magnitude following tetanic stimulation is shown for 29 experimental conditions, 17 of which report a presynaptic component of expression (+). LTP with a magnitude greater than or equal to 180% (dashed line) had a higher probability of being associated with a presynaptic component of expression (91.67%) than LTP with a lower magnitude (35.3%).
Table 2. Studies examining the involvement of nitric oxide in LTP. SD, Sprague-Dawley.

<table>
<thead>
<tr>
<th>Citationa</th>
<th>Protocol</th>
<th>%LTPb</th>
<th>ΔLTP in NO blockadec</th>
<th>Age/animal</th>
<th>Temp. (°C)</th>
<th>NO inhibitorsd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohme et al. [81]</td>
<td>(100 at 100 Hz × 2) at 0.02 Hz</td>
<td>146</td>
<td>decreased (9%)</td>
<td>5–6 weeks SD</td>
<td>32°C</td>
<td>L-NOArg (0.1 μM)</td>
</tr>
<tr>
<td>Schuman &amp; Madison [79]</td>
<td>(100 at 100 Hz) × 4–5 at 0.033–0.066 Hz</td>
<td>143</td>
<td>decreased (0–10%)</td>
<td>2–3 weeks SD</td>
<td>22°C</td>
<td>L-NOArg (100 μM), L-MeArg (100 um), Hg (100 μM)</td>
</tr>
<tr>
<td>O'Dell et al. [80]</td>
<td>(100 at 100 Hz) × 2 at 0.05 Hz</td>
<td>205</td>
<td>decreased (20%)</td>
<td>Age? Guinea pig</td>
<td>24°C</td>
<td>L-NOArg (50 μM), L-MeArg (1000 um intracellular), Hg (20 μM)</td>
</tr>
<tr>
<td>Bon et al. [92]</td>
<td>(100 at 100 Hz) × 2 at 0.02 Hz</td>
<td>200</td>
<td>decreased (43%)</td>
<td>5–6 weeks SD</td>
<td>32°C</td>
<td>L-NOArg (0.1–100 nM), Hg (10–100 nM)</td>
</tr>
<tr>
<td>Gribkoff &amp; Lum-Ragan [93]</td>
<td>(100 at 100 Hz); 50% max intensity</td>
<td>135</td>
<td>no change (40%)</td>
<td>4–12 weeks F-344 male rat</td>
<td>32°C</td>
<td>L-NOArg (50–200 μM), NMMA (100 μM)</td>
</tr>
<tr>
<td></td>
<td>100 at 100 Hz × 2) at 0.017 Hz; max intensity</td>
<td>190</td>
<td>decreased (25%)</td>
<td>4–12 weeks F-344 male rat</td>
<td>32°C</td>
<td>L-NOArg (100 μM), NMMA (100 μM)</td>
</tr>
<tr>
<td>Haley et al. [94]</td>
<td>(4 at 100 Hz) × 10 at 5 Hz</td>
<td>137</td>
<td>decreased (2%)</td>
<td>4–6 weeks SD</td>
<td>31°C</td>
<td>L-NOArg (10 nM–10 μM), Hg (100 μM)</td>
</tr>
<tr>
<td>Haley et al. [95]</td>
<td>(25 at 100 Hz) × 2 at 0.2 Hz</td>
<td>119</td>
<td>decreased (6%)</td>
<td>4–6 weeks SD</td>
<td>31°C</td>
<td>L-NOArg (10–1000 μM)</td>
</tr>
<tr>
<td></td>
<td>(50 at 100 Hz) × 2 at 0.1 Hz</td>
<td>115</td>
<td>no change (17%)</td>
<td>4–6 weeks SD</td>
<td>31°C</td>
<td>L-NOArg (10–1000 μM)</td>
</tr>
<tr>
<td></td>
<td>(25 at 100 Hz) × 2 at 0.2 Hz; 2× intensity</td>
<td>118</td>
<td>no change (15%)</td>
<td>4–6 weeks SD</td>
<td>31°C</td>
<td>L-NOArg (10–100 μM)</td>
</tr>
<tr>
<td>Kato &amp; Zorumski [96]</td>
<td>30 at 100 Hz</td>
<td>109</td>
<td>increased (33%)</td>
<td>3–4 weeks male albino rat</td>
<td>30°C</td>
<td>L-NOArg (5–100 μM); Hg (10 μM)</td>
</tr>
<tr>
<td>Chetkovich et al. [97]</td>
<td>100 at 100 Hz × 3 at 10.02 Hz; 50% max intensity</td>
<td>150</td>
<td>decreased (13%)</td>
<td>approximately 4 weeks SD</td>
<td>32°C</td>
<td>L-NOArg (100 μM)</td>
</tr>
<tr>
<td></td>
<td>100 at 100 Hz × 3 at 10.02 Hz; max intensity</td>
<td>175</td>
<td>no change (75%)</td>
<td>approximately 4 weeks SD</td>
<td>32°C</td>
<td>L-NOArg (100 μM)</td>
</tr>
<tr>
<td>Musleh et al. [98]</td>
<td>(4 at 100 Hz) × 10 at 5 Hz</td>
<td>142</td>
<td>decreased (~8%)</td>
<td>4–6 weeks SD</td>
<td>35°C</td>
<td>L-NOArg (20 μM), L-MeArg (100 μM), Hg (50 μM)</td>
</tr>
<tr>
<td>Williams et al. [99]</td>
<td>(20 at 100 Hz) × 6 at 0.33 Hz</td>
<td>130</td>
<td>decreased (0%)</td>
<td>5–7 weeks SD</td>
<td>24°C</td>
<td>L-NOArg (100 μM); L-NAME (0.1 mM), Hg (20 μM)</td>
</tr>
<tr>
<td></td>
<td>(20 at 100 Hz) × 6 at 0.33 Hz; 0.3 Hz + Bicuculline</td>
<td>180</td>
<td>decreased (22%)</td>
<td>5–7 weeks SD</td>
<td>24°C</td>
<td>L-NOArg (100 μM)</td>
</tr>
<tr>
<td></td>
<td>(20 at 100 Hz) × 6 at 0.33 Hz</td>
<td>156</td>
<td>no change (60%)</td>
<td>5–7 weeks SD</td>
<td>29°C</td>
<td>L-NOArg (100 μM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>159</td>
<td>no change (56%)</td>
<td>16–24 weeks SD</td>
<td>29°C</td>
<td>L-NOArg (0.1–1 mM), L-NAME (0.1 mM), Hg (20 μM)</td>
</tr>
</tbody>
</table>

(Continued.)
<table>
<thead>
<tr>
<th>Citation</th>
<th>Protocol</th>
<th>%LTP&lt;sup&gt;b&lt;/sup&gt;</th>
<th>ΔLTP in NO blockade&lt;sup&gt;c&lt;/sup&gt;</th>
<th>Age/Animal</th>
<th>Temp. (°C)</th>
<th>NO inhibitors&lt;sup&gt;d&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicolakis &amp; Bennett [100]</td>
<td>(50 at 100 Hz) × 2 at 0.1 Hz</td>
<td>192</td>
<td>decreased (32%)</td>
<td>3–5 weeks Wistar</td>
<td>21–23°C</td>
<td>L-NAME (100–300 μM)</td>
</tr>
<tr>
<td>Cummings et al. [101]</td>
<td>(100 at 100 Hz) × 4 at 0.033 Hz</td>
<td>150</td>
<td>decreased (56%)</td>
<td>2–3 weeks SD</td>
<td>25–29°C</td>
<td>L-NoArg (100 μM)</td>
</tr>
<tr>
<td>O'Dell et al. [86]</td>
<td>(4 at 100 Hz) × 25 at 5 Hz; baseline intensity</td>
<td>125</td>
<td>decreased (5%)</td>
<td>Age? mouse</td>
<td>30°C</td>
<td>L-NoArg (50 μM)</td>
</tr>
<tr>
<td></td>
<td>(4 at 100 Hz) × 25 at 5 Hz; 50% max intensity</td>
<td>190</td>
<td>decreased (60%)</td>
<td>30°C</td>
<td></td>
<td>L-NoArg (50 μM),</td>
</tr>
<tr>
<td>Boulton et al. [102]</td>
<td>100 at 100 Hz</td>
<td>168</td>
<td>decreased (32%)</td>
<td>4–6 weeks Wistar</td>
<td>24°C</td>
<td>L-NoArg (100 μM)</td>
</tr>
<tr>
<td></td>
<td>100 at 100 Hz</td>
<td>180</td>
<td>decreased (34%)</td>
<td>4–6 weeks Wistar</td>
<td>30°C</td>
<td>L-NoArg (100 μM)</td>
</tr>
<tr>
<td>Malen &amp; Chapman [103]</td>
<td>900 at 30 Hz</td>
<td>123</td>
<td>decreased (3%)</td>
<td>2–20 weeks SD</td>
<td>32°C</td>
<td>L-NAME (100 μM)</td>
</tr>
<tr>
<td></td>
<td>50 at 100 Hz</td>
<td>115</td>
<td>no change (17%)</td>
<td>2–20 weeks SD</td>
<td>32°C</td>
<td>L-NAME (100 μM)</td>
</tr>
<tr>
<td>Zhou et al. [104,105]</td>
<td>100 at 100 Hz</td>
<td>163</td>
<td>decreased (—6%)</td>
<td>4–6 weeks SD</td>
<td>28–30°C</td>
<td>L-NoArg (100 μM)</td>
</tr>
<tr>
<td></td>
<td>100 at 100 Hz × 2; 2 × baseline duration</td>
<td>210</td>
<td>decreased (81%)</td>
<td>4–6 weeks SD</td>
<td>28–30°C</td>
<td>L-NoArg (100 μM)</td>
</tr>
<tr>
<td>Wilson et al. [87]</td>
<td>10 at 100 Hz × 3</td>
<td>138</td>
<td>decreased (8%)</td>
<td>8–12 weeks mouse</td>
<td>29–31°C</td>
<td>L-NoArg (200 μM)</td>
</tr>
<tr>
<td></td>
<td>10 at 100 Hz × 3; 2 × baseline duration</td>
<td>150</td>
<td>decreased (40%)</td>
<td>8–12 weeks mouse</td>
<td>29–31°C</td>
<td>L-NoArg (200 μM)</td>
</tr>
<tr>
<td>Ko &amp; Kelly [106]</td>
<td>(25 at 100 Hz) × 5 at 0.2 Hz</td>
<td>180</td>
<td>decreased (25%)</td>
<td>5–8 weeks SD</td>
<td>32°C</td>
<td>L-NAME (100 μM), C-PTIO (30 μM), MGD-Fe (75/150 μM)</td>
</tr>
<tr>
<td>Bon &amp; Garthwaite [107]</td>
<td>100 at 100 Hz</td>
<td>150</td>
<td>decreased (25%)</td>
<td>6–8 weeks SD</td>
<td>30°C</td>
<td>L-NoArg (100 μM), L-NIO (100 μM)</td>
</tr>
<tr>
<td>Johnstone &amp; Raymond [67]</td>
<td>((4 at 100 Hz) × 10 at 5 Hz) × 1</td>
<td>130</td>
<td>no change (35%)</td>
<td>6–8 weeks Wistar</td>
<td>approximately 22°C</td>
<td>L-NAME (100 μM), cPTIO (40 μM)</td>
</tr>
<tr>
<td></td>
<td>((4 at 100 Hz) × 10 at 5 Hz) × 4 at 0.003 Hz</td>
<td>150</td>
<td>no change (60%)</td>
<td>6–8 weeks Wistar</td>
<td>approximately 22°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4 at 100 Hz) × 10 at 5 Hz × 8 at 0.0033 Hz</td>
<td>180</td>
<td>decreased (40%)</td>
<td>6–8 weeks Wistar</td>
<td>approximately 22°C</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup>Blank spaces represent additional experiments conducted by the same study cited in the row above. Studies with very similar experimental conditions have been combined and are represented in one row.

<sup>b</sup>%LTP is expressed as % of baseline measured 30 min post-tetanus. %LTP was estimated from graphs in studies where LTP magnitude was not mentioned in the text. In instances where a study conducted multiple experiments under similar conditions, %LTP was taken as the average across experiments.

<sup>c</sup>%LTP obtained with NO inhibition is included in brackets.

<sup>d</sup>L-NAME, L-NG-nitroarginine methyl ester; L-Arg, L-arginine; L-MeArg, N-glycyl-L-arginine; Hg, haemoglobin; NMMA, L-NG-monomethylarginine; C-PTIO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; MGD-Fe, iron-N,N,N,N-methyl-D-glucamine dithiocarbamate complex; L-NIO, N5-(1-iminoethyl)-L-ornithine.
Although the study by Arancio et al. [89] demonstrates that NO acts at the presynaptic terminal, evidence for its role in the actual enhancement of presynaptic strength has come more recently. In 2003, Nikonenko et al. [90] found that tetanic stimulation induced structural changes within the axon, including outgrowth of filopodia and the restructuring of presynaptic boutons. These changes could be abolished with NO inhibitors and could be elicited with bath application of NO donors. Stanton et al. [91] later demonstrated that activity-dependent potentiation of presynaptic function, as assessed with FM dyes, was also dependent on NO signalling [91]; these findings have since been confirmed by two additional studies using FM dyes and paired pulse ratio to monitor presynaptic enhancements [27,67].

4. Reconciling the literature

Although NO appears to be a promising candidate for a retrograde signal, its role in plasticity remains controversial, principally because some studies fail to find LTP impairments following the inhibition of NO signalling. Much like the presynaptic expression of LTP, the importance of NO looks to be dependent on the stimulus paradigm used to induce LTP. For example, Johnston & Raymond [68] demonstrated that NO inhibitors only affected LTP induced by multiple trains of theta-burst stimulation, as opposed to a single train, which in their hands failed to enhance presynaptic strength [68]. We therefore reason that NO inhibition is most likely to impair LTP when it has a presynaptic component of expression. To examine this idea, we looked at studies investigating the effects of NO inhibitors on LTP at Schaffer-collateral synapses; all relevant studies searched on PubMed (search terms: LTP and NO) were included. Although, these studies did not specifically monitor presynaptic strength, we looked to see whether, across studies, the sensitivity of LTP to NO inhibitors was correlated with the magnitude of LTP, which we have already shown reflects the likelihood that an enhancement in presynaptic function has occurred post-tetanus (figure 1).

We examined a total of 36 experiments across 21 studies (table 2); experiments were divided into NO-sensitive and NO-insensitive, depending on whether NO blockade reduced the expression of LTP. We find that the magnitude of control LTP is \(162 \pm 5.5\%\) in NO-sensitive experiments (25/36), but only \(136 \pm 8.0\%\) in NO-insensitive experiments (11/36) (\(U = 84.5; p = 0.02\)). We also divided experiments based on those reporting (i) strong LTP, as defined as having a magnitude greater than or equal to 180\%, which has a high probability (91.67\%) of being associated with presynaptic changes (figure 1) and (ii) those reporting weak LTP (less than 180\%), which is less likely (35.3\%) to be associated with presynaptic changes. Although the age and temperature of the preparation, as well as the type and concentration of NO inhibitors varied greatly across experiments (table 2), we find that NO inhibition reduced LTP in 10 of 10 experiments that yielded strong LTP but in only 16 of 26 experiments that yielded weak LTP (\(X^2 = 11.08; p = 0.0009\)). Such findings suggest that the degree to which plasticity is dependent on NO signalling depends on the magnitude, and potentially the locus, of LTP. It should be mentioned, however, that independent of its role as a retrograde signal, NO has effects on postsynaptic signalling; as a result, inhibition of NO synthesis may have additionally affected postsynaptic plasticity under certain experimental conditions [99,103,106,108,109].

There have also been disagreements regarding the effect of exogenous NO on synaptic function. Bohme et al. [81] first demonstrated that NO donors persistently potentiated synaptic responses; similar effects were later confirmed using NO donors, free NO, and photoactivated NO [80–83,89,90,103,104]. By contrast, two groups have failed to elicit LTP with NO application [110–112]. Exogenous NO, therefore, appears to have varied effects on synaptic responses across studies. However, it is important to recognize that, like any transmitter in the nervous system, NO has a diverse repertoire of effects on neuronal function [113]. As with glutamate, the specific effect of NO at a synapse will very likely depend on (i) the spatio-temporal dynamics and concentration of signalling, (ii) the current pattern of neuronal activity and (iii) the state of the synapse. For NO, the parameters required for the induction of LTP remain largely unknown and may not always be emulated by the application of exogenous NO, in whatever form [113]. The fact that the vast majority of studies manage to potentiate synaptic responses using exogenous NO, while having little knowledge of the dynamics of endogenous NO signalling, is remarkable in and of itself, and certainly a compelling demonstration that NO signalling has the potential to induce LTP; though, as with glutamate, this potential is likely to be realized only under certain conditions.

5. Concluding remarks

Discrepancies in the literature have raised doubts over a presynaptic locus of LTP. We have argued that these discrepancies actually reflect the presence of two mechanistically distinct forms of LTP: one, which is expressed postsynaptically and dependent on Ca\(^{2+}\) influx from NMDARs and the other, which is expressed presynaptically and dependent on Ca\(^{2+}\) influx from L-VGCCs. Experimental protocols that successfully activate L-VGCCs are most likely to recruit a presynaptic component of LTP expression and are also most likely to involve a retrograde signal, such as NO. As research continues to elucidate the mechanistic basis of presynaptic plasticity, one thing is becoming clear: the current, postsynaptic-centric dogma of LTP needs to change in order to reflect the more comprehensive understanding of synaptic plasticity that is supported by a growing body of literature. There are two sides to the synapse, and both can change.

References


38. Bliss TV, Collingridge GL. 2013 Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol. Brain 6, 5. (doi:10.1186/1756-6606-6-5)


43. Abrahamsson T, Gustafsson B, Hanse E. 2008 AMPA silencing is a prerequisite for developmentally regulated long-term potentiation in the hippocampal CA1 region. J. Neurophysiol. 100, 2605–2614. (doi:10.1152/jn.00476.2008)


64. Volanskiis A, Collingridge GL. 1991 Long-term potentiation of hippocampal neurons. Nature 349, 156 – 158. (doi:10.1038/349156a0)


69. Zhuo M, Kandel ER, Hawkins RD. 1994 Nitric oxide and cGMP can produce either synaptic depression or potentiation depending on the frequency of presynaptic stimulation in the hippocampus. Neuron 15, 1033 – 1036. (doi:10.1016/0896-6273(94)90148-1)


72. Zhao M, Kandel ER, Hawkins RD. 1994 Nitric oxide and cGMP can produce either synaptic depression or potentiation depending on the frequency of presynaptic stimulation in the hippocampus. Science 260, 1946 – 1950. (doi:10.1126/science.8100368)


74. Foster TC, McNaulton BL. 1991 Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content. Hippocampus 1, 79 – 91. (doi:10.1002/hipo.450010108)


76. Schuman EM, Madison DV, Kandel ER. 199405000-00004)


82. Zhao M, Kandel ER, Hawkins RD. 1994 Nitric oxide and cGMP can produce either synaptic depression or potentiation depending on the frequency of presynaptic stimulation in the hippocampus. Neuron 15, 1033 – 1036. (doi:10.1016/0896-6273(94)90148-1)


