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The factors that determine the origin and fate of cross-species transmission

events remain unclear for the majority of human pathogens, despite being

central for the development of predictive models and assessing the efficacy

of prevention strategies. Here, we describe a flexible Bayesian statistical

framework to reconstruct virus transmission between different host species

based on viral gene sequences, while simultaneously testing and estimating

the contribution of several potential predictors of cross-species transmission.

Specifically, we use a generalized linear model extension of phylogenetic dif-

fusion to perform Bayesian model averaging over candidate predictors. By

further extending this model with branch partitioning, we allow for distinct

host transition processes on external and internal branches, thus discriminat-

ing between recent cross-species transmissions, many of which are likely to

result in dead-end infections, and host shifts that reflect successful onwards

transmission in the new host species. Our approach corroborates genetic

distance between hosts as a key determinant of both host shifts and cross-

species transmissions of rabies virus in North American bats. Furthermore,

our results indicate that geographical range overlap is a modest predictor

for cross-species transmission, but not for host shifts. Although our evol-

utionary framework focused on the multi-host reservoir dynamics of bat

rabies virus, it is applicable to other pathogens and to other discrete state

transition processes.
1. Introduction
Many devastating infectious diseases have emerged from zoonotic viruses that

have successfully jumped the ecological and evolutionary species barriers to

generate sustained epidemics [1]. Jumps of viruses from their natural reservoirs

can, however, have a range of distinct outcomes. Cross-species transmissions

(CSTs) may trigger major epidemics such as those caused by HIV/AIDS, influ-

enza type A virus and SARS coronavirus. Conversely, infections caused by CST

can result in little or no onwards transmission in the recipient species, such as

in Ebola virus and rabies virus infection in humans [2]. Although an under-

standing of the factors underlying the initial stages of viral emergence is

central to public health strategies [3,4], these remain poorly understood for

most important human pathogens.

As a multi-host pathogen that persists in independent cycles in numerous

mammalian reservoir species [5,6], rabies provides an ideal candidate model

to investigate CST dynamics at its earliest phases. Rabies is also one of the

best-studied zoonotic pathogens [7–9], and its epidemic and evolutionary
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Figure 1. Time-calibrated maximum clade credibility (MCC) tree inferred for
372 nucleoprotein gene sequences sampled from 17 bat species. Branches
were coloured according to most probable host species, indicated
in the colour legend. Ap ¼ Antrozous pallidus, Ef ¼ Eptesicus fuscus,
Lb ¼ Lasiurus borealis, Lbl ¼ Lasiurus blossevillii, Lc ¼ Lasiurus cinereus,
Li ¼ Lasiurus intermedius, Ln ¼ Lasionycteris noctivagans, Ls ¼ Lasiurus
seminolus, Lx ¼ Lasiurus xanthinus, Ma ¼ Myotis austroriparious,
Mc ¼ Myotis californicus complex, Ml ¼ Myotis lucifugus complex,
My ¼ Myotis yumanensis, Nh ¼ Nycticeius humeralis, Ph ¼ Parastrellus
hesperus, Ps ¼ Perimyotis subflavus, Tb ¼ Tadarida brasiliensis.
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dynamics have frequently been explored using viral genetic

data [10–12]. In North American bat species, rabies estab-

lishes different host-associated lineages through a process

of frequent CST, mostly resulting in dead-end infections

(CST spillover), but occasionally leading to successful and

preferential transmission in the new host species (host

shifts) [13]. A key question that naturally arises from this

observation concerns the determinants underlying different

stages of the CST dynamics: what factors govern the pro-

cess of CST and host shifts of the virus? This has

recently been addressed by a population genetic study of

a comprehensive set of rabies virus gene sequences from

distinct bat species, which demonstrated that lower degrees

of host divergence between different species increase the

chances of CST spillover and historical host shifts [5]. To

a lesser extent, range overlap also played a role in the

CST dynamics. So, despite the tremendous evolutionary

potential that is generally ascribed to rapidly evolving

viruses, which has sometimes led to the expectation that

CST will be limited by ecological boundaries [4,14], CST

is mainly restricted by host divergence in North American

bat rabies populations.

The phylogenetic structuring into host-associated linea-

ges, each maintained by a dominant bat species (figure 1),

allowed Streicker et al. [5] to use an operational definition

of host shifts and CST: while inferred changes in host in the

ancestral history between these lineages reflects host shifting,

viral jumps between the dominant host and other bat species

within each lineage were considered to represent CST. To

quantify rabies CST, Streicker et al. [5] applied a structured

population genetics approach to viral sequence subsets for

pairs of host species. For each pair of species that was infec-

ted by a common viral lineage, different hypotheses of CST

directionality were tested, and estimates for the migration

rate bij from bat species i to j were obtained using Migrate

[15]. These migration rates were subsequently used to calcu-

late per capita CST rates (Rij), which can be interpreted as

the expected number of infections in bat species i resulting

from a single-infected individual from species j, based on

Rij ¼ bij � uj � t�1, where uj represents an estimate of the

genetic diversity for the viral population in bat species j
and t is the generation time. The latter is the sum of the incu-

bation and infectious periods and taken to be 29 days based

on controlled infection studies in insectivorous bats [16].

Finally, several factors were assessed as potential predictors

for the Rij estimates using standard generalized linear

model (GLM) testing. Not only does this procedure require

a series of population genetic analyses on subsets of viral

sequence data, but also the considerable uncertainty that is

generally associated with such estimation is necessarily

ignored prior to statistical assessment. Although CST was

the primary focus of the study by Streicker et al. [5], the

authors also explored host shifts using a phylogenetic

diffusion approach [17], and found some support for a corre-

lation between host shifting and phylogenetic similarity

between the hosts.

Here, we advance the application of phylogenetic diffu-

sion models to processes of host transitioning, and describe

a flexible Bayesian statistical framework to reconstruct virus

transmission between different host species while simul-

taneously testing and quantifying the contribution of

multiple ecological and evolutionary drivers of both CST

spillover and host shifting. For this purpose, we parametrize
the infinitesimal rates of a stochastic discrete diffusion pro-

cess as a GLM, and perform Bayesian model averaging

over several potential predictors of viral dispersal among

host species. To discriminate between dead-end infection

and sustained transmission in the new recipient species, we

extend the diffusion approach to allow for a different host

transition process on external and internal branches. Because

understanding viral distributions within host ranges is

important for anticipating emergence and developing appro-

priate strategies for prevention [7,10], we use a separate GLM

diffusion model to identify potential predictors of viral

spread in geographical space.

Finally, we demonstrate how a Bayesian stochastic search

variable selection (BSSVS) procedure is able to estimate the

connectivity in terms of viral transmission among host

species, whereas Markov jump counts quantify the trans-

mission intensity along these connections. We compare

http://rstb.royalsocietypublishing.org/
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these estimates to per capita CST rates represented in a trans-

mission network [5], which were obtained by the pairwise

population genetic estimation procedure.
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2. Material and methods
(a) Genetic and epidemiological data
Host species, spatial locations and sampling collection year were

annotated for 372 nucleoprotein gene sequences (nucleotide pos-

itions: 594–1353). This data comprised a total of 17 bat species

sampled between 1997 and 2006 across 14 states in the United

States [5]. Two additional species that had been excluded from

the original analysis owing to a limited amount of available

sequences, Myotis austroriparius (Ma) and Parastrellus hesperus
(Ph), were now included. We also included a virus sequence

with an unknown sampling date (accession no. TX5275),

sampled in Texas from Lasiurus borealis, and estimate its

sampling date [18].

For the predictors of CST, we considered phylogenetic

distances between bat species, geographical range overlap, eco-

logical similarities in roost structures, wing aspect ratio, wing

loading capacity and similarities in body sizes (described in

detail in Streicker et al. [5]). Geographic range overlap was esti-

mated as the percentage of overlap between the geographical

range occupied by the recipient and donor species. Wing

aspect ratio is defined as the ratio of the length of the wing to

the width of the wing. Wing loading capacity is defined as the

weight of a bat species divided by the area of the wings (in

units of kg m22). To relate the overlap of roost structures

among all species, a binary matrix was used.

To test different determinants of viral dispersal between

localities, we considered three distinct predictors: great-circle dis-

tances between each pair of locations (taken as the centroid of the

county where each bat species was found), the number of rabies

virus cases in bats in each of the relevant US states during 2010

[19] (a crude proxy for population size in the absence of such

numbers for each bat species) and the geographical area in

square kilometres of each federate state.
(b) Generalized linear model diffusion and branch
partitioning

We model CST spillover and host shifting in the rabies virus

evolutionary history as a stochastic diffusion process among a

set of discrete states (in this case, bat species) in a Bayesian frame-

work. This approach uses a continuous-time Markov chain

(CTMC) to model discrete outcomes as a continuous function

of time in temporally calibrated phylogenetic trees and has

been introduced for phylogeographic estimation in which case

locations make up the discrete states [17]. In our host transition

application, we can represent the Markov process as a directed

graph of host states among which viruses are transmitted. The

rates or intensities at which viruses transition among pairs of

hosts are typically denoted as the ijth elements (Lij) of a tran-

sition rate matrix L. Standard Bayesian inference under this

model, including a parametrization that aims to infer a sparse tran-

sition matrix through Bayesian stochastic search variable selection

(BSSVS) procedure, has been described in Lemey et al. [17].

To test predictors for the CTMC transition rates among pairs

of hosts (Lij), we use a recent extension of the phylogenetic diffu-

sion model that parametrizes these rates as a log-linear function

of an arbitrary number of predictors [20]. Briefly, this GLM

specifies coefficients (bi) for each predictor pi, allowing the esti-

mation of their contribution to the diffusion process, as well as

(0,1)-indicator variables (di) to model the inclusion or exclusion
of each predictor, such that the following relationship holds:

logLij ¼ b1d1 logðp1Þ þ b2d2 logðp2Þ þ � � � þ bndn logð pnÞ; ð2:1Þ

for each Lij and the n predictors.

By considering the potential contribution of all predictors sim-

ultaneously and jointly estimating both their importance (di) and

relative size (bi), we efficiently perform Bayesian model averaging

over all potential predictors for the discretized host transitioning

process while simultaneously reconstructing this process. Lemey

et al. [20] discuss a Metropolis–Hastings transition kernel for

b ¼ ðb1; . . . ;bnÞ that exploits the fixed correlation structure

between predictors. We also refer to Drummond & Suchard [21]

for a transition kernel on d ¼ ðd1; . . . ; dnÞ. Based on the prior

and posterior expectation for di, which can be considered as the

inclusion probability for a predictor pi, the support for each

predictor can be expressed as a Bayes factor (BF) [20].

Here, we extend the phylogenetic diffusion model, including

the GLM parametrization, by allowing a different transition pro-

cess on external (L ext) and internal (Lint) branches in order to

discriminate between recent CSTs, many of which are likely to

result in dead-end infections, and host shifts deeper in the evol-

utionary history that reflect successful onwards transmission in

the new host species.

We follow standard phylogenetic practice in Bayesian infer-

ence by sharing evolutionary models among all branches

throughout the evolutionary history, except for the GLM specific

parameters (Lext and Lint), including the effect sizes (bext and

bint) for the predictors and the indicator variables (dext and dint

) that determine the inclusion of these predictors.

All predictors were log transformed and standardized, except

for the overlap of roost structures, which was coded as a vector of

binary indicators for sharing or not sharing roost structures (see

the electronic supplementary material). While the external/

internal GLM branch partitioning (BP) was used to investigate

predictors of CST and host shifts, we apply this partitioning sim-

ultaneously with a separate homogeneous GLM diffusion model

[20] to investigate predictors of spatial diffusion.
(c) BEAST with BEAGLE inference
Discrete phylogenetic diffusion analyses were performed under

an asymmetric diffusion model [22] using Markov chain Monte

Carlo (MCMC) implemented in BEAST v. 1.7 [23]. Two chains

of 2.5 � 108 steps, sub-sampled every 50,000th generation were

combined after discarding 10 per cent of the generations from

each as burn-in. Analyses were performed under a general

time reversible nucleotide substitution model, with 4G rate

categories and a proportion I of invariant sites, and using a

flexible Bayesian skyride demographic prior [24] and an un-

correlated lognormal-relaxed molecular clock [25]. A BSSVS

procedure was used to identify significant pathways of host

and spatial diffusion [17]. As a measure of statistical support

for rates between discrete traits, e.g. host species or spatial

locations, the BSSVS approach delivers a BF test by comparing

the posterior with the prior odds that a particular rate is required

to explain the diffusion process [17]. We follow standard terminol-

ogy in BF interpretation [26], in which the strength of evidence for

a particular rate is substantial when BF . 3, strong if BF . 10,

very strong if BF . 30 and decisive if BF . 100. In addition to esti-

mating support for diffusion pathways, we also used a robust

counting procedure [12,27] to estimate the posterior expectations

of the number of host transitions (Markov jumps) along the

branches of the unknown tree [28]. Convergence of the MCMC

output was inspected using Tracer and a maximum clade credi-

bility (MCC) tree was summarized using TreeAnnotator and

visualized using Figtree graphical user-interface (available at

http://tree.bio.ed.ac.uk/). All analyses were performed using

the BEAGLE library to enhance computation speed [29,30].

http://tree.bio.ed.ac.uk/
http://tree.bio.ed.ac.uk/
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Figure 2. Predictors of CST spillover and historical host shifts for bat rabies virus sampled in North America. For each potential predictor, the Bayes factor (BF)
support and the conditional effect sizes (cESs) obtained using a homogeneous (squares) and a branch-partitioned GLM diffusion approach (circles) implemented in
BEAST are shown ( posterior mean and 95% Bayesian credible interval, BCI). The contribution of external (related to CST spillover) and internal (historical host shifts)
branch substitution processes is shown separately using empty and filled circles, respectively. Note that the credible intervals for the cES of the predictors with BF
above three exclude zero, which can be considered as an additional indication for its importance.
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3. Results
(a) Determinants of cross-species transmission spillover

and host shifts in the bat rabies virus evolutionary
history

We analyse a heterochronous dataset comprising 372 nucleo-

protein gene sequences sampled from 17 bat species using a

full probabilistic model that encompasses components of

timed sequence evolution, hosts transitioning and spatial dis-

persal. As an illustration of the former, our Bayesian inference

procedure arrives at an estimate of the bat virus nucleopro-

tein gene evolutionary rate of 2.77 � 1024 (95% Bayesian

credible interval, BCI: 1.25 � 1024 to 4.32 � 1024) substi-

tutions per site per year, and a most recent common

ancestor of bat rabies in North America dated back to 1631

(95% BCI: 1353–1847; figure 1).

To identify the factors that determine CST spillover and its

fate in the new host, we first adopted a recently developed

GLM extension of a Bayesian phylogenetic diffusion model

that has been introduced in a phylogeographic context [20].

Here, we refer to this as the ‘homogeneous GLM diffusion

model’ and use this to simultaneously reconstruct host tran-

sition processes in the entire viral evolutionary history while

identifying the variables that contribute significantly to this

process. We follow Streicker et al. [5] and consider host genetic

distance, geographical range overlap and similarities in roost

structures, wing aspect ratio, wing loading and body size as

potential predictors of the host diffusion process.
Figure 2 lists BF support for each predictor as well as the

conditional effect sizes (cESs) on a log scale; the latter

summarizes the coefficients conditional on the predictor

being included in the GLM model (bijdi ¼ 1). The negative

conditional cES obtained using the homogeneous GLM diffu-

sion model (open squares) for host distance (21.21 (95% BCI:

21.64, 20.85)) imply that lower genetic distances between

host species are predictive of higher rates of viral host

jumping with a decisive statistical support (BF ¼ 7974). Con-

versely, coefficients above zero indicate a positive correlation

between the intensity of viral host jumping and the extent of

geographical range overlap (ES ¼ 1.03 (95% BCI: 0.28, 1.96)),

albeit with only a modest support (BF ¼ 4.45).

To further discriminate between recent CSTs and success-

fully established host shifts that reflect onwards transmission

in the new host species, we extend the phylogenetic diffusion

approach in BEAST to allow for a separate discrete diffu-

sion process on both internal and external branches in the

phylogeny. This BP allows the separation of recent CST,

which likely represent evolutionary dead-ends in the new

host species as expected from the typical short terminal

branch length of such tips [5], from historical host shifts

that occurred deeper in the evolutionary history.

The branch-partitioned GLM diffusion model reveals that

genetic distance between hosts is a strong predictor for both

CST spillover and historical host shifts (figure 2). This is cor-

roborated by the decisive BF rates obtained for host genetic

similarity using both the internal branch GLM (BF ¼ 3374)

and the external branch GLM (BF ¼ 27.04). In the two

http://rstb.royalsocietypublishing.org/
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cases, we also obtain cES estimates close to 21 (20.82 (95%

BCI: 21.14, 20.52) and 20.78 (95% BCI: 21.10, 20.40),

respectively). For geographical range overlap, we obtain

moderate support BF ¼ 7.24) and a positive cES of 1.03

with credible intervals that exclude zero (0.28, 1.96) for the

external branches. However, we did not find support for an

impact of geographical range overlap in host shifting (BF ¼

0.16 and cES estimates of 0.29 (95% BCI: 20.63, 1.80)).

Taken together, the results obtained using the branch-

partitioned GLM diffusion model strongly support that the

intensity of both recent CST and historical host shifts is pre-

dicted by host genetic similarity, and for recent CST this

implies that merely establishing an infection of a single indi-

vidual of a näve host species may depend on its genetic

relatedness to the donor bat species, even if this results in a

dead-end infection. Moreover, our results also show that

some degree of geographical range overlap is required for

recent CST spillover, but it is not a significant predictor of

established host shifts.

In agreement with previous findings [5], our analysis did

not reveal a significant role for roost structures, wing aspect

ratio, wing loading and body size, which represent ecological

predictors in our GLM approach.

(b) Determinants of spatial dispersal
We further explore the application of a homogeneous GLM

diffusion model [20] to identify possible predictors of viral

dispersal among the 14 states in the US. This was done simul-

taneously with the host jump inference, and further illustrates

the flexibility of our approach in incorporating different data

types in a single probabilistic framework. Our results indicate

a key role of spatial distance in viral spread between spatial

localities (BF¼ 6516, with a cES of 21.14 (95% BCI: 21.43,

20.86); figure 3). This provides decisive support for the

notion that viral dispersal occurs mostly between closely

located regions rather than through long distance dispersal,

despite the mobility of some bat species. Such knowledge

may be useful to take into account in phylogeographic infer-

ences that necessarily operate on sparse data. Furthermore,

our analysis did not reveal evidence for the predictive role of

the number of rabies cases or the geographical area of each

of the US states considered.
(c) Transmission connectivity and magnitude of host
transitioning

Based on a series of structured coalescent analyses of viral

migration among pairs of host species, Streicker et al. [5]

quantified per capita transmission rates and represented

these in a ‘transmission web’ network. The species pairs con-

sidered for this network consisted of each combination of

major bat host species associated with a viral lineage and

the assumed recipient species in these lineages. Therefore,

the connectivity only represents the CST dynamics implied

within the host-associated lineages; the viral transmission

along these connections is an estimated quantity obtained

by genealogy-based population genetic inference.

Here, we first attempt to capture the connectivity among

bat species using a BSSVS procedure under an asymmetric

model of host diffusion [17]. In this case, the connectivity is esti-

mated by identifying highly supported host transition rates

without conditioning on the observation of host-associated

lineages. This procedure considers the complete viral evol-

utionary history and not only the host pairs involved in CST.

Figure 4a shows the rates that were supported by a rela-

tively strong BF support (BF . 10). The BSSVS procedure

identifies support for a total of 19 host transition rates,

whereas a total of 31 CST connections were implied by the

transmission web in Streicker et al. [5]. Fifteen out of the 19

well-supported rates (80%) are represented by connections

in the previously published transmission web. The four

additional host-transitioning rates inferred with strong sup-

port by our approach (starred arrows in figure 4a) may

reflect host jumps ancestral to the host-associated lineages

or more subtle CST dynamics within those lineages. An

example of the latter is the host transition rate from Lx to

Ap species that is supported in our analysis by a BF of 28.5.

A close inspection of our MCC tree shows that within the

Lc-associated lineage, the discrete diffusion approach recon-

structs a transmission from species Lc to Lx and then

subsequently from Lx to Ap, instead of the transition from

Lc to Ap inferred in the original analysis [5]. Similar scenarios

can be identified for the other additional rates. Because

Streicker et al. [5] considers the Lc species to be the major

host associated with this lineage, and as a consequence, Lx

and Ap to be recipient species within this lineage,

http://rstb.royalsocietypublishing.org/
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transmission to potentially intermediate hosts as Lx are not

represented by connections in the transmission web. The

existence of such intermediate hosts is particularly plausible

when the two spillover hosts are found in the same geo-

graphical region in the same time frame. This is the case for

at least Lbl and Mc [5]. Another possible explanation is that

local dynamics within the reservoir species lead to multiple

CSTs, while by chance the reservoir host is not sampled

and thus the two recent spillover hosts seem very closely

related. Our connectivity inference does not question the
assumptions of major host species being associated with

different viral lineages, but simply demonstrates that CSTs

additional to those from these major host species cannot

always be excluded by the data.

When the BF cut-off was lowered to a moderate support

of 5, our connectivity approach identifies support for a total

of 31 host transitioning rates, with 20 of these well-supported

rates (65%) being represented in the CST transmission web

[5]. The decrease in consistency with the previous CST trans-

mission web [5] can be explained by the fact that a lower BF

invokes many more uncertain rates that yield less convincing

support for their involvement in CST, and also rates involved

with ancestral host shifts may become more prominent under

lower cut-offs.

While the BSSVS procedure delivers the statistical support

for particular host transitions, it does not provide a quantifi-

cation of the magnitude of these host transitions. For the

latter, we use Markov jump estimations based on robust

counting techniques [12,27,28] and summarize the expected

number of jumps along the connectivity identified by

BSSVS in figure 4b. It is interesting to note that not all the

strongly supported BF rates actually correspond to a high

magnitude in host transition rates. For example, while we

obtain a very strong BF support of 97 for the host jump

between Tb and Ef, we estimate only a mean of 1 Markov

jump between these hosts. Conversely, we estimate 3

Markov jumps from Lc to Ef, but with a BF support of 12

for this connection.
4. Discussion
In this study, we present a flexible phylogenetic diffusion

approach as an alternative to coalescent estimation for inves-

tigating CST and host switching based on viral genetic data.

Phylogenetic diffusion models are now frequently being used

for phylogeographic analyses [31], but also the inference of

host jumping has become of interest [32,33]. The most impor-

tant contribution of the current work is the extension of a

GLM diffusion model that allows the inference of the discrete

state transition history while simultaneously identifying the

underlying predictors. The GLM diffusion model avoids

post hoc statistical analyses of genetic estimates, which gener-

ally involves operating on mean estimates and ignores

associated uncertainty that can be considerably large. The

Bayesian inference approach enables model averaging over

a number of potential diffusion predictors and estimates the

support and contribution of each predictor while marginaliz-

ing over phylogenetic history. Our results based on a

homogeneous GLM diffusion approach corroborate that

host genetic distances and, at a lesser extent, geographical

range overlap pose important constraints for rabies CST [5].

Importantly, we extend the phylogenetic diffusion

approach to allow for different processes, in the form of

different CTMC matrices, for different branch sets in the phy-

logeny. In the case of rabies transmission, we use this to

separate out and test the determinants of host transitioning

on both external and internal branches, which, respectively,

reflect CST spillover and historical shifts among various bat

hosts. We believe that the BP represents an important exten-

sion of the phylogenetic diffusion approach in order to

distinguish two crucial stages in viral emergence. Whereas

the determinants of CST had been scrutinized by estimating
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per capita rate estimates and subsequently testing these using

a standard GLM approach, a similar test procedure was not

available for ancestral host jumps [5].

However, external and internal BP only serves as an

approximation to discriminate between CST and ancestral

host jumps. Reassuringly, the rabies phylogeny is generally

characterized by very short tips (figure 1), and Streicker

et al. [5] showed that they were no more genetically divergent

than donor lineage viruses. This suggested that external

branches of the rabies phylogeny most likely represented

dead-end infections than infections occurring within stutter-

ing chains of transmission in the recipient species, that is,

chains that will propagate for a few generations in the new

host species before dying out. However, this does not for-

mally rule out the possibility of stuttering chains along the

external branches. Stuttering chains of human-to-human

transmission of H5N1 avian influenza provide an example

for this [34]. Importantly, host shifts at internal branches

that are phylogenetically close to the external branches can

also correspond to such stuttering chains of transmission.

Thus, an absolute phylogenetic distinction in terms of the

outcome of CST remains difficult. The external/internal BP

essentially offers an operational prior distinction between

jumps leading to generally ‘less’ and ‘more’ successful propa-

gation in the new host. Further work may be aimed at

methodology, perhaps in the form of mixture models, to pro-

vide better posterior classifications in terms of the outcome of

host jumps in the phylogeny.

The observation that host genetic distances represent

important constraints for both CST spillover and host shifts

is not a stand-alone finding. The ability of sigma viruses to

persist and replicate in Drosophila species has also been

explained by the host phylogeny, with viral titres declining

with increasing distance from the reservoir species [35]. For

fungal pathogens infecting plants, a similar relation was

found between phylogenetic distance between the plant

host and the likelihood of infection [36]. More generally,

the idea that phylogenetically similar species exchange

viruses with higher probability of success has been well

acknowledged in the field of pathogen emergence [3,37,38].

However, in very few cases has it been possible to isolate at

which stage of a host shift such barriers may act. The strength

of the current approach and Streicker et al. [5] is the ability to

demonstrate phylogenetic barriers at two stages: emergence

and establishment. Although the findings by Londgon et al.
[35] in Drosophila sigma viruses are consistent with this

scenario, the generality of this phenomenon remains to be

investigated in other systems.

Our results also confirm that geographical range overlap

is a modest, but non-negligible, predictor of CST spillover.

For viral host jumps to result in onwards transmission to

the recipient species, initial exposure of the new host species

to the pathogen is required [2]. For example, ecological

opportunity, determined by ecological changes driven by

the process of economic development and land use, have pre-

viously been implicated as a determinant of successful CST

from animal reservoir species to humans [3,39,40].

The fact that geographical range overlap is apparently not

required to explain the host shift diffusion process could have

many explanations. First, it may reflect the ability of some bat

species to fly long distances during seasonal migrations [41].

However, our spatial analyses revealed that closer geographi-

cal distances are predictive of higher viral migration rates,
suggesting that viral transmission occurs predominantly at

a local scale. Although the BSSVS analysis identified support

for viral migration between exceptionally distant spatial

locations which could possibly be related with host migration

(not shown), the finding that geographic distances and gen-

etic distances are correlated has also been shown for fox

and raccoon rabies virus [10,11]. Second, the currently

observed range overlap for bat species may not have

remained constant throughout bat rabies evolutionary his-

tory, which dates back several centuries for the current

sample according to the divergence date estimates. Our esti-

mates of the time of rabies evolutionary history in North

America are in reasonable agreement with previous estimates

[13,42], but even the estimates of a relatively longstanding

rabies transmission dynamics may represent only a small

part of the history of rabies in North America, because the

common ancestor of modern viral strains does not necessarily

extend back to the origin of the virus [43]. Third, there could

be missing lineages in the tree (undiscovered viruses), and

some inferred host shifts may actually have involved different

donor species. Fourth, it is plausible that the relatively limited

number of host shifts on internal branches yields less power

to inform a GLM model applied to this branch set. Finally,

and because the ranges of most bat species used for this

analysis do overlap, it would be interesting to revisit the

extent of range overlap as a predictor of CST and host

shifts when larger datasets from other geographical locations

become available.

In general, we cannot rule out the lack of power to explain

lack of support for particular diffusion predictors, such as eco-

logical predictors for CST (roost structures, wing aspect ratio,

wing loading and body size). Phylogenetic diffusion models

inevitably operate on sparse data, and whereas the GLM

approach model generally has much fewer parameters than

a standard diffusion model, it remains uncertain whether all

factors contributing to the historical diffusion process can be

inferred from the distribution of host or their locations at the

tips of a phylogeny. In addition, sample sizes may affect the

GLM parameter estimates and we cannot exclude that predic-

tors other than the ones we specified might be involved with

host transitioning or spatial dispersal. For example, spatial dif-

fusion might be predicted by bat population sizes, but the

number of rabies cases per state used in this study might be

too crude a proxy for population size.

The summary of per capita transmission rates in the ‘trans-

mission web’ differs in many aspects from our phylogenetic

diffusion approach and a direct comparison is, therefore, dif-

ficult to make. Whereas the connectivity in the previously

constructed transmission web is hypothesized based on the

interpretation of CST within the host-associated lineages [5],

our Bayesian phylogenetic diffusion approach attempts to

estimate this connectivity, and because it considers the

entire phylogenetic history, the connectivity estimate may

also represent ancestral host jumps. In addition to measuring

statistical support for host jumps between pairs of species, we

also estimate the number of jumps along a set of strongly

supported host transition pairs using robust counting tech-

niques. A comparison of BF support for rates of diffusion

(figure 4a) and posterior estimates of the number of jumps

(figure 4b) indicates that high support for connectivity does

not necessarily translate into a consistently high intensity of

jumps. We note that this may also be important to bear in

mind when interpreting phylogeographic applications of
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the discrete diffusion models and BSSVS, where a well-

supported rate may for example be represented by only one

migration event as long that is clearly evident from the

data. The distinction between support and magnitude is

one that we also make in our GLM model, through effect

sizes and indicators, and can be important when predictors

exist on different scales. As a quantification of the magnitude

of host transitioning among only strongly supported rates,

the robust counting procedure should produce estimates

that are more comparable to the population genetic migration

rates estimated by Streicker et al. [5]. In this respect, it is inter-

esting to note that the three pairs of bat species exhibiting the

highest number of host transitions (species Mc and Ml, Lc and

Lx, and Lb and Ls), are consistent with the population genetic

estimates [5]. We note, however, that population genetic esti-

mates are more appropriate than phylogenetic transition

estimates to approximate per capita CST rates, because the

former adequately takes into account the ‘genetic size’ of the

donor and recipient hosts of rabies transmission.

The work on rabies CST in North American bats species

has recently been extended by an investigation of evolutionary

rate shifts associated with ancestral host shifts [42]. Based on a

phylogenetic analysis using the same Bayesian software in

which we implemented our discrete diffusion models,

Streicker et al. [42] demonstrate that rabies lineages associated

with subtropical bat populations evolve nearly four times

faster than those associated with temperate species. To find

statistical evidence for this, the authors adopted hierarchical

phylogenetic model (HPM) methodology [44] and incorporate

fixed effects to allow to test differences in the evolutionary rate

estimate for different groups of viral lineages (e.g., grouped

according to host geography [42]). Although the fixed-effect

HPM model and the discrete GLM-diffusion model are very

different approaches, performing Bayesian estimation for

these models relies on similar inference methodology, because

the fixed effects in the HPM are also specified through
coefficients that quantify the effect size and effect indicators

that represent the inclusion probability or support.
5. Conclusion
In conclusion, the development and extension of a flexible

approach to reconstruct discrete state transition processes

while simultaneously identifying their determinants provides

an useful framework to scrutinize CST and host shifts. The

identification of risk factors that control or influence host

transitioning may have important implications in the predic-

tion, surveillance and control of new epidemic diseases [4].

We believe that the rabies example presented here makes a

substantive contribution to this discussion.

Although we focused on multi-host reservoir dynamics of

bat rabies virus, this approach is generally applicable to other

pathogens and to other discrete state transition processes

beyond spatial or host diffusion such as, for instances, viral dif-

fusion between body organs and tissues. We hope that this

framework will be useful to understand the key drivers of

cross species dynamics for a broad range of zoonotic pathogens.
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