On imputing function to structure from the behavioural effects of brain lesions

Malcolm P. Young*, Claus-C. Hilgetag and Jack W. Scannell

Neural Systems Group, Department of Psychology, University of Newcastle upon Tyne, Ridley Building, Newcastle upon Tyne NE1 7RU, UK

What is the link, if any, between the patterns of connections in the brain and the behavioural effects of localized brain lesions? We explored this question in four related ways. First, we investigated the distribution of activity decrements that followed simulated damage to elements of the thalamocortical network, using integrative mechanisms that have recently been used to successfully relate connection data to information on the spread of activation, and to account simultaneously for a variety of lesion effects. Second, we examined the consequences of the patterns of decrement seen in the simulation for each type of inference that has been employed to impute function to structure on the basis of the effects of brain lesions. Every variety of conventional inference, including double dissociation, readily misattributed function to structure. Third, we tried to derive a more reliable framework of inference for imputing function to structure, by clarifying concepts of function, and exploring a more formal framework, in which knowledge of connectivity is necessary but insufficient, based on concepts capable of mathematical specification. Fourth, we applied this framework to inferences about function relating to a simple network that reproduces intact, lesioned and paradoxically restored orientating behaviour. Lesion effects could be used to recover detailed and reliable information on which structures contributed to particular functions in this simple network. Finally, we explored how the effects of brain lesions and this formal approach could be used in conjunction with information from multiple neuroscience methodologies to develop a practical and reliable approach to inferring the functional roles of brain structures.

Keywords: double dissociation; structure–function relationships; corticocortical connections; thalamocortical connections; inference; neuroinformatics

1. INTRODUCTION

It is a long-standing premise in brain science (e.g. Flechsig 1905; Meynert 1890) that understanding how the brain is organized structurally will inform understanding of how it works. An important motivation behind much experimental neuroanatomy, for example, has been the intuition that structure–function relationships are of signal importance in the brain, and that investigations of purely anatomical aspects of the brain could have a physiological significance well beyond their actual subject matter. In many respects, this premise has been amply borne out, and the approach that derives from it has succeeded spectacularly: very few neurophysiologists would now find their work possible without the wide variety of anatomically derived information that frames their understanding of the systems they investigate. In other respects, structure–function relationships at many scales of the nervous system have remained opaque and elusive. The well-known mismatch, for example, between cortical neurons’ morphological extent and complexity and the localized physiological properties that neurophysiologists report (Douglas & Martin 1991) has only recently begun to give way (Douglas & Martin 1994; Douglas et al. 1996). Similarly, at the level of whole systems in the brain, the extent and complexity of cortico- and thalamocortical networks has been difficult to relate clearly to the functional properties of the network or of its constituent structures. This latter difficulty has also recently begun to give way, evidenced by the ability of analyses of these complex networks to predict successfully the location of cells with specific physiological properties (e.g. Scannell et al. 1996, 1997; cf. Merabet et al. 1998), to account for the distribution of particular kinds of selectivity by reference to the structure of part of the network (Burns & Young, this issue; Hilgetag et al. 1996; Hilgetag, Burns, O’Neill, Scannell & Young, this issue), and to account for the spatial distribution of activity across the areas of the cortex after localized experimental disinhibition (Kötter & Sommer, this issue; Stephan, Hilgetag, Burns, O’Neill, Young & Kötter, this issue).

These explicit systems-level structure–function relationships reveal parts of a causal bridge between connectional anatomy and physiological function. However, they do not yet directly inform the structure–function relationships that have been of most interest to behavioural neuroscientists. One object of that discipline is to try to identify the specific behavioural or cognitive functions mediated by specific anatomical structures by damaging...
the structures and observing the effects of this damage on
behaviour. Thus this aim is to impute specific function to
specific structures on the basis of the effects of lesions of
those structures. It is not unreasonable to think that
specific lesions have their effects on behaviour through
t heir e f f e c t s on the network of connections in the brain,
and so on other brain structures. Yet the link between
connectivity and lesion effects remains almost completely
opaque.

We are interested in whether a mathematical and
computational bridge can be built between connectivity
and the behavioural effects of lesions in brain structures.
Such a bridge could aid prediction, the reliability of
inferences from lesion effects, and could begin to provide
a framework in which the multiple sources of information
that bear upon the function of a brain system, such as its
connectivity, neurophysiology, gross activation and the
effects of lesions of its structures, could inform one
another formally, and hence lead towards better under-
standing. We assume that one end of a bridge between
connectivity and the functional effects of lesions must be
anchored on information about the connections between
brain structures. Neuroinformatic studies of neuro-
anatomical connectivity therefore formed our starting
point. We developed the link between connectivity and
lesion effects in the following ways, each of which is the
subject of one of the sections below.

First, recent demonstrations of structure–function
relationships have employed simple integrative mechan-
isms to successfully relate connection data to information
on the spread of activation (Kötter & Sommer, this
issue), and to account simultaneously for intact, lesioned
and several kinds of paradoxically restored orientating
function (Hilgetag, Burns, O’Neill, Scannell & Young,
this issue). Together, these problems offer constraints from
several different experimental sources, suggesting that
the integrative mechanisms that link them are a useful
basis for initial modelling of the relationships between
brain structures, including those perturbed by lesions.
Accordingly, we began by selecting a system in which
connectivity has been well studied, the thalamocortical
system of the cat (Scannell et al. 1999), and, using the
integrative mechanisms that underlay the structure–
function relationships just described, investigated the
distribution of activity decrements that followed
simulated damage to elements of the thalamocortical
network. Second, we examined the consequences of the
patterns of decrement seen in the simulation for each type
of inference that has been employed to impute function to
structure on the basis of the effects of brain lesions. Third,
we tried to derive a more reliable framework of inference
for imputing function to structure, by clarifying concepts of
structure and function, and deriving a more formal
framework based on concepts capable of mathematical
specification. Fourth, we applied this framework to
inferences about function relating to a simple network
that reproduces intact, lesioned and paradoxically
restored orientating behaviour (Hilgetag, Burns, O’Neill,
Scannell & Young, this issue), and show that lesion effects
can in some circumstances be used to recover reliable
information on which brain structures contribute to parti-
cular behavioural functions. Finally, we explore how a
reliable approach to inferring the functional role of brain
structures from the effects of lesions to them might be
further developed.

2. MODELLING DAMAGE IN A COMPLEX NETWORK

To explore the general effects of lesions on a complex
network of cortical areas and thalamic nuclei, we have
made a number of simple models based on experiment-
ally reported thalamo-corticocortical connectivity. The
connection data that we used, which include the extrinsic
connections linking nearly all the areas of the cerebral
cortex and nuclei of the thalamus (figure 1a), were collated by Scannell et al. (1999) and are available at
(www.flash.ncl.ac.uk/ptrs/cat_cor_thal.htm). The inte-
grative mechanisms used to model the dynamics of
activity in individual stations and the propagation of
activity through the network were inspired by, and
closely related to, the mechanisms used successfully else-
where to link empirically reported connectivity to the
empirically reported propagation of activity (Kötter &
Sommer, this issue), and connectivity and orientating
behaviour (Hilgetag, Burns, O’Neill, Scannell & Young,
this issue).

The present report concerns only the simplest model
we have constructed. In the model, the mean level of
activity in each cortical area or thalamic nucleus was
represented as the level of activation of a unit. The
pattern of connections between the units was derived
from the known pattern of extrinsic connections between
cortical areas and thalamic nuclei, so that each unit
represented a particular cortical area or thalamic
nucleus. The input to each unit, x_i, was given by equation
(1), where W_{ji} was the connection weight of the jth to
the ith unit, z_j was the activation of the jth unit, and g_i
was the gain of the ith unit.

$$
x_i = g_i \sum_j (W_{ji} \times z_j). \tag{1}
$$

The activation of each unit simply depended on its instan-
taneous level of input, x_i. Activation was calculated using
a sigmoidal activation function, and could range between
0 and 1 (equation (2)). Parameter a (the o f f s e t of the acti-
vation function) was set to 0.5 and parameter k (the slope
of the activation function) set to 3. The gain of each unit,
g_i, was adjusted so that activation, z_i, settled to an equili-
bruim state of 0.5.

$$
z_i = \frac{1}{1 + e^{(a-x_i)}}, \tag{2}
$$

As the levels of gain were adjusted for each unit, the
model network approached a state of equilibrium. When
equilibrium was achieved, the gain for each unit was
fixed. The adjustable gain was simply a scaling procedure,
so that areas with many inputs did not remain at much
higher levels of activation than areas with few inputs.
Very similar results were obtained with fixed levels of
gain. We then made ‘lesions’ in the network, by removing
each unit in turn. We recorded the level of activation in
all the other units in the network following each lesion,
and this is shown in figure 1b. The simulation was run in
MATLAB.
Figure 1. Direct connections and lesion effects in a simple model of the thalamo-corticocortical network. (a) The weights of the direct connections between 55 units representing particular cortical areas (x- and y-axes, structures 1 to 55) and 41 units representing particular thalamic nuclei (x- and y-axes, structures 56 to 96). White, light grey, dark grey and black squares represent connections with weights of 0, 1, 2 and 3, respectively. The weights agree with the rank order of the densities of the corresponding anatomical projections. Note that there are no direct neural projections between the units representing thalamic nuclei, as thalamic nuclei do not have direct neural connections with each other. Reading vertically up the matrix shows the weights of each area’s inputs. Reading horizontally across the matrix shows the weights of each area’s outputs. (b) The impact on the network of a lesion in each unit. The colours in the matrix represent the level of activity after the lesion divided by the level of activity prior to the lesion. White squares indicate no change, darker squares represent stronger suppression. Reading horizontally shows the sensitivity of each unit to lesions elsewhere. Reading vertically shows the strength of a unit’s vulnerability to lesions in other structures. The magnitude of the suppression was reasonably constant, by lesions in any of a large number of other structures, but the vulnerability to lesions made elsewhere in the network also depended on the number and nature of connections that the unit made. Units that connect relatively widely tended to be suppressed by lesions in any of a large number of other structures, but were much less sensitive to lesions in the many structures with which they did not connect. Hence, the number of connections possessed by a structure was an important determinant both of the impact that lesions of that structure had upon the network, and of the vulnerability of the structure to being affected by lesions made elsewhere. In the empirically derived thalamo-corticocortical network there is a high degree of variability in the number of extrinsic connections made by different cortical areas and thalamic nuclei (Scannell et al. 1999), suggesting that the impact of, and vulnerability of structures to, lesions will be highly variable between structures.

3. CONVENTIONAL INFERENCE

In §2, we examined the propagation of the effects of simulated lesions through the thalamocortical model and
the lesioned structure was not directly connected, the effects of lesions propagated to other structures to which the lesioned structure participated. Third, the vulnerability of structures to lesions elsewhere in the network again depended on the number of connections of a structure. Structures with profuse connectivity were affected by lesions in many other structures, but the magnitude of their suppression did not depend greatly on the precise location in which the distant lesion was made. Structures with relatively few connections were greatly affected by lesions in the few structures from which they received connections, but were much less sensitive to lesions in the many structures with which they did not connect.

These three effects are each unsurprising. Connection diagrams themselves promote a recognition of the plethora of pathways through which information could be conducted. Similarly, the dependence of the impact of a lesion, and the dependence of vulnerability to distant lesions, on the richness of the connectivity of structures could be apprehended from first principles. However, some of these effects do not appear to have been considered in the context of the inferences that can reliably be made about the functions of brain structures from the effects of their lesions on behaviour. The question arises: Could conventional inferences about the effects of brain lesions reliably determine the functional roles of structures in a network that behaves like that simulated in the previous section?

The question of what constitutes reliable evidence for an imputation of a function to a structure has been treated by neurologists and behavioural neuroscientists (e.g. Dean 1982; Damasio & Damasio 1989; Grobstein 1990; Luria 1973; Teuber 1955). In general, these treatments have tended over time towards increasingly great caution in what can validly be inferred from the effect, or lack of effect, of a lesion on behaviour. Typically they have focused on the inferential adequacy or otherwise of varieties of dissociation of function revealed by lesions, and we examine these dissociations in the context of the behaviour of the thalamocortical model below. However, inferences about which part of the brain does what made from data about behavioural lesion effects are to be distinguished from the inferences made in a different enterprise from somewhat similar data. Aspects of what can be deduced from the effects of lesions about information processing and other functional models have also been discussed extensively by neuropsychologists (e.g. Jones 1983; Shallice 1988). Since the aim of this neuropsychological work is mainly to dissociate functional models and not to impute functions to particular structures in the brain (Shallice 1988), it presents a different problem to that of imputing function to structure on the basis of the effects of brain lesions, and we do not treat it further here.

(a) Indirect effects and diaschisis (‘action at a distance’)

Indirect effects, mediated by multiple routes through multiple structures, are a feature of a relationship between cortical connectivity and the patterns of spread

Figure 2. Connectivity influences lesion impact and lesion vulnerability. (a) Relative activity in the network following lesions depends on the connectivity of the lesioned unit. The y-axis shows total activity in network after a lesion divided by total activity before the lesion. The x-axis shows the sum of the connection weights of the lesioned unit. Lesions to units with more connections have a larger impact on activity in the rest of the network. (b) Vulnerability to lesions depends on the units’ connections. The y-axis provides a measure of the variability in sensitivity to lesions: the standard deviation of the activity in the unit following lesions elsewhere. The x-axis shows the sum of connection weights of the intact unit whose activity is measured. Units that make few connections have very variable vulnerability. They escape the consequences of lesions in units to which they do not connect, but are severely suppressed by lesions in units to which they do connect. Units with very widespread connectivity have a much less variable response to lesions. They are less affected by lesions in the structures to which they connect, because may of their inputs remain intact, but they are also more sensitive to the indirect network-mediated effects of lesions in structures to which they do not connect directly.

Phil. Trans. R. Soc. Lond. B (2000)
of disinhibited cortical activity (Kötter & Sommer, this issue). Indeed, removing these indirect interactions from the computations reduces the goodness of statistical fit between connectivity and activity spread (Kötter & Sommer, this issue). Here, very similar integrative mechanisms suggested that indirect interactions should also arise from, and relay, activity decrements resulting from lesions. Activity decrements in a structure, arising from reduced inputs from distant lesioned or inactivated sites, could affect the mediation of the structure’s information processing functions (e.g. Hilgetag, Burns, O’Neill, Scannell & Young, this issue). Should this local information processing function be vital to the performance of a behaviour, lesions at distant sites could therefore affect the behaviour by these indirect means, even when they play no direct role in mediating it. Hence, ‘action at a distance’, or diaschisis, a concept once much used among neurologists (e.g. Monakow 1910, 1914; Luria 1973), but which appears to have fallen almost out of use, should be a fairly general property of brain networks.

In the context of inferences from lesion effects, it is a strong temptation to believe that an experimentally induced lesion causing a decrement in a behaviour does so directly through the impairment of the information processing functions of the lesioned structure. However, indirect network-mediated effects, if present, suggest that it is unsafe to assume that a lesion has its detrimental effect on behaviour by virtue of the effect of the lesion on processing local to the lesion site—or even on processing in the structures to which the lesion site is directly connected. Evidence that sites distant to the lesion are unimpaired would be required in addition to the lesion location and the functional deficit for the impaired function to be imputed to the lesioned structure. Plainly, this additional information could not be derived without gaining further information on processing elsewhere. Conclusive proof for the imputation would require an exhaustive search through all other possible brain structures, since the inference takes the form of argument by exclusion. Hence, if there is any propagation of activity decrements from a lesion through the network sufficient to degrade information processing elsewhere, the implication is that the loss of a behavioural function following a lesion cannot be adequate to infer that the lesioned structure was involved in mediating the degraded function. More directly empirical considerations led to the same conclusion (Grobstein 1990).

In a similar vein, the propagation of lesion effects away from the lesion site implies that the lesioned network will be inequivalent to the intact network, even leaving aside the differences of processing in the lesioned structure, and considerations of possible plastic change elsewhere. This also restricts what can be inferred from the survival of a particular function following a lesion. Retention of the function plainly suggests that the remaining structures and circuitry are sufficient to mediate the behaviour in the lesioned animal. But the inequivalence of the lesioned and intact networks suggests that it would not be justified to infer that the non-lesioned structures are sufficient in the intact system (see also Grobstein 1990). Similarly, this inequivalence further suggests that it would not be justified to infer that the lesioned structure did not mediate in the intact system a function that remains after the lesion. For example, it could not be validly inferred from the preservation of aspects of colour vision after a lesion of V4 that V4 did not mediate these same aspects of colour vision in normal vision in an intact animal prior to the lesion (cf. Heywood et al. 1995).

These foregoing considerations of the validity of inference arise from the propagation of the effects of a lesion to distant elements of the brain’s network. In the next section, we turn to the specific issue of single dissociations of function.

(b) Single dissociation

Lashley (1932) and Teuber (1955) raised the question of whether an apparently specific deficit arising from a lesion can be sufficient proof that the deficit is actually specific. An apparently specific deficit could indeed arise from the loss or impairment of a specific process and processor, but the possibility that the deficit arises from some more general impairment could not be ruled out by a single dissociation of this kind (Teuber 1955). Hence, initial questions about the adequacy of single dissociations of function arose from suspicions that such results could not rule out more general deficits that could explain experimental results just as well. However, the nature of the deficit, and the experimental circumstance in which it appears, determine to an extent the plausibility of alternative, non-specific, explanations for it. Some results are easier than others to challenge in this way. For example, it would be easy to invoke any of a variety of general impairments to explain the loss of food-acquisition behaviour following a lesion. It may be harder to explain in non-specific terms the loss of orientating behaviour towards food items presented in the visual field contralateral to a cortical lesion when this is accompanied by intact orientating to the ipsilateral hemifield and by control conditions that rule out lack of comparison behaviour, a failure of comprehension of the testing situation and differences of the training set (e.g. Lomber & Payne 1996). Hence, competing non-specific accounts for particular deficits might be ruled out or ameliorated by careful experimental design, as for other methodologies, all else being equal.

A second defect of single dissociations as a basis for imputing function to structure, however, was a concern that some functions may be mediated by processors that are more sensitive to damage anywhere in the system (e.g. Teuber 1955). A behavioural deficit apparent after a lesion could be an example of the decrement of a vulnerable processor by a lesion in a structure that itself has no information-processing role in mediating the behaviour, or it could be evidence for an interdependent hierarchy of function in which the lesioned site plays a role, rather than evidence for a localization of the function (Teuber 1955). These possibilities cannot be ruled out by a single dissociation of function, even with very careful experimental design, since they advert to aspects of the internal organization of neural systems that are impossible to control externally. These concerns have led to great caution in making inferences about the localization of function from instances of single dissociation (e.g. Grobstein 1990; Teuber 1955). It is now widely recognized
that a loss or deficit in a behavioural function that follows a lesion in a particular structure does not imply that the structure was involved in mediating the function (Grobstein 1990).

Both of the effects that arise in our simulation from the different numbers of connections possessed by different stations suggest that this reticence about single dissociation is well advised. Some structures were straightforwardly more vulnerable to lesions elsewhere than others. Should an experimenter have the misfortune to take an interest in a behavioural function mediated by one or more especially vulnerable processors, and the further misfortune not to lesion one of these implicated structures, a deficit in the behaviour in a single dissociation would immediately lead to the imputation of the function to the wrong station. An experimenter with uncommonly greater luck might make the right imputation, but the right and wrong cases cannot be discriminated without further information. Single dissociation is therefore capable of correct imputation: the problem with its reliability as a basis for inference is not a basic logical incapacity, but that one cannot know without other information that the inference is correct. Hence, differential vulnerability of brain structures strongly suggests that a single dissociation of function is not reliable evidence for the imputation of a function to a structure, as noted by Teuber (1955).

Earlier discussions of single dissociation, however, do not appear to acknowledge the other factor that arises from differential connectivity: the differential impact of lesions on the network. The simulation showed, unsurprisingly, that lesions of structures emitting relatively large numbers of connections affected structures elsewhere in the network more than did lesions of regions with few connections, and that direct connections were particularly effective in propagating decrements to stations with few connections. This provides another way in which luck could enter the imputation of function from a single dissociation. Experimental lesions in structures other than that mediating the function being tested could be made in regions with a paucity of connections and no direct connection to the processors mediating the function, so avoiding misattribution of the function to them. But such a lesion made in a richly connected structure, or in one emitting a direct connection, might reduce activity in the mediating processors sufficiently that the behavioural function would be imputed incorrectly to the wrong richly connected or directly connected processor.

These considerations suggest that single dissociation is not a reliable means of imputing function to structure in the brain, because it can easily give rise to incorrect attributions. The differential vulnerability and impact evidenced by the simulation echo concerns that have long been credited in neurology and behavioural neuroscience. These disciplines have consequently developed a more elaborate basis for inference about the roles of brain structures. Double dissociation now represents for many the ‘gold standard’ for inference and has been considered to provide ‘conclusive proof’ (Teuber 1955). The next section considers the validity of double dissociation as a means of imputing function to structure in the context of the effects of lesions made evident by the simulation of the thalamo-cortical network.

(c) Double dissociation

Following Teuber (1955), an example of double dissociation is that tactile discrimination can be disturbed by some lesion without loss on visual tasks, to a degree of severity comparable to visual deficits arising from a different lesion, which lesion causes no loss on the tactile task. Hence, more generally, double dissociation is the case when function 1 is disturbed by lesion A and not lesion B, while function 2 is disturbed by lesion B and not lesion A. Inference from double dissociation offers much stronger evidence that the two functional deficits are specific than does single dissociation (Teuber 1955), but it has not been prescribed principally to impute functions to structures, despite having very frequently been used to do so, particularly in recent years (e.g. Ennaceur et al. 1989, 1990). We note that these uncertainties about double dissociation from the effects observed in the simulation of the thalamocortical model? Interactions between differential vulnerability and impact are of particular interest, since it is possible that these two factors might conspire to
produce effects of unsuspected severity in surprising stations. To explore this issue initially, we considered two different behavioural functions, one delegated to a richly connected, and the other to a less-connected station. Using the results of the simulation as regards the vulnerability to, and impact of, lesions to structures with these connectional properties, we constructed a contingency table to show the quality of the severity of effects that would be expected for each combination of lesion and function.

The rows of table 1 give the quality of the effects on the two different behavioural functions of different lesions. The top row corresponds to a function mediated by a richly connected (RC) processor and the lower row to one mediated by a less-connected (LC) processor. Lesions can be made in RC or LC stations; and the lesions can be either direct hits on the processors concerned or made elsewhere (as in accidental misses or control lesions). For lesions made elsewhere in the network, there was a marked difference in the simulation in the effects of lesions made in structures directly connected to LC structures, when compared to the effect of lesions to structures not directly connected to them. This difference is represented by the MISS–DIRECT (i.e. a miss lesion made in a structure directly connected to the processor mediating the function) and MISS–INDIRECT (i.e. a miss lesion in a structure not directly connected to the processor mediating the function) categories. Complete abolition of the function could be signalled by XXXX qualities, severe degradation by XXX, moderate or noticeable deficit by XX and minor or insignificant effects by X qualities.

We consider a threshold for determining a significant behavioural decrement in the function that lies between effects of strength XX and XXX. This threshold can be raised or lowered, for example by using a more or less sensitive behavioural test, or by altered statistical criteria. However, a lower threshold (i.e. between effects of severity X and XX) would render functions mediated by a RC processor impossible to localize, because its function would always be disrupted significantly by any lesion anywhere. Hence, there could be no double dissociation in this case, because the RC function would always be disrupted. Functions carried by an LC processor could also not be localized in this case because only lesions in less-connected structures not connected to the LC processor would yield informative preservation of the LC processor’s function and a process of elimination could not therefore be conducted. Empirical results show that double dissociations do occur and so a lower threshold for deciding whether a significant behavioural deficit has occurred is unrealistic. Conversely, complete abolition of a behaviour is seldom a requirement for a dissociation to be claimed experimentally, and so a higher threshold (i.e. between effects of severity XXX and XXXX) is also unrealistic.

Does the table of severities in table 1 provide a basis for the correct assignment of functions to structures using double dissociation? Consider two lesions, one made in the RC processor that mediates function 1, the other made in the LC processor that mediates function 2. The first lesion (RC–HIT) abolishes function 1 (effect of severity XXXX). Concomitantly, if the RC processor is assumed to be unconnected to the LC processor, the same lesion would also constitute a miss in a richly connected structure unconnected to the LC processor (RC–MISS–INDIRECT), yielding a non-significant effect of severity XX. The second lesion (LC–HIT) abolishes function 2 (XXXX), but does not significantly degrade function 1 (LC–MISS–DIRECT or LC–MISS–INDIRECT: both effects of severity XX). Hence, lesion A degrades function 1 but not function 2, while lesion B degrades function 2 but not function 1, constituting a double dissociation. In this circumstance, function 1 would be correctly imputed to the RC processor that mediates it and lesion of which abolishes function 1. Similarly, function 2 would be correctly imputed to the LC processor that mediates it and lesion of which abolishes function 2.

Table 1. A table of qualities related to the expected categories of severity for a variety of possible lesion and processor combinations

(The qualities are generated by interactions between the differential impact of lesions and differential vulnerability to lesions, both of which effects were related to the different numbers of connections possessed by structures in the thalamo-cortico-cortical simulation (see §2). We consider the simple case of effects on two notional processors, one a richly connected (RC) station and the other a less-connected (LC) one. The two processors mediate different behavioural functions. We assume that lesion of either station would abolish the function being performed there (effects of severity XXXX). For lesions made elsewhere in the network than these two processors (i.e. ‘misses’), the combinations of impact of such a lesion and the vulnerability of the processor to such a lesion are expressed in the other qualities. For example, the LC processor is relatively invulnerable to lesions made in stations unconnected to it (i.e. MISS–INDIRECT cases), and lesions in some other LC station have a relatively modest effect on structures elsewhere in the network. Hence, LC–MISS–INDIRECT produces an effect of low severity, X. The RC processor is relatively more vulnerable to lesions made elsewhere, and so this combination of lesion and processor produces an effect of severity XX. Similarly, lesions made in RC structures have a greater impact on other structures and so produce effects of greater severity than those in LC stations. The quality of severity of every combination of processor and lesion can be derived in the same way from combinations of vulnerability and impact. The categories RC–HIT on a LC processor and LC–HIT on a RC processor do not exist. The consequences of these contingencies for inference using single and double dissociation are described in the text.)
Exactly analogous contingencies can be explored for two different functions mediated by two different LC processors or two different RC processors. In the case where the two LC processors mediating the two functions are unconnected, a double dissociation can again be derived that correctly ascribes the functions to the two processors, provided that the lesions are made in the correct processors. However, in the case that the two LC processors are directly connected, both lesions would significantly degrade both functions, because of the relatively high impact on an LC processor of a lesion made in another structure directly connected to it (LC – MISS – DIRECT), and hence no double dissociation might be derived as a basis on which to impute function to a processor. A similar problem could attend imputations of different functions to two different RC processors. The high impact on the network of a lesion in an RC station, and the vulnerability of a function-mediating RC processor to lesions elsewhere, mean that significant degradation of both functions could follow from any lesion of an RC structure. Hence, double dissociations might be expected to be more difficult to demonstrate for these combinations of processors and lesions, and so there could be greater difficulty in using double dissociation to impute the functions to structures in these cases. Also, the greater impact of lesions made in structures directly connected to processors mediating a function should render it more difficult to generate clear double dissociations. This might make it more difficult to impute different functions to directly connected processors by that form of inference, assuming no gross difference in the connectivity of the two processors to the rest of the network.

Does the table of severities in table 1 provide a basis for the mistaken assignment of functions to structures in cases of unequivocal double dissociation? Consider again the circumstance that function 1 is mediated by a RC processor, and function 2 is mediated by a LC processor. Consider further a lesion made in a RC structure that does not mediate behavioural function 1 (as in the RC – MISS – DIRECT and RC – MISS – INDIRECT columns). Because of the large effect on the network of lesioning the RC structure, and the vulnerability of the RC processor itself to lesions anywhere in the network, the lesion could severely degrade the function (effect of severity XXX). The same lesion, if the RC structure and the LC processor are unconnected, does not decreme the LC processor's function significantly (LC – MISS – INDIRECT: XX). A different lesion, making a direct hit on the LC processor mediating function 2, will degrade the LC function (XXXX), but it is also a LC – MISS – INDIRECT (XX) for the RC processor, and it does not decrement the RC function significantly. Hence, lesion A degrades function 1 while leaving function 2, and lesion B degrades function 2 without significantly affecting function 1. These lesions therefore generate an unequivocal double dissociation of function and an unequivocally incorrect imputation of function to structure: function 1, mediated by the RC processor, is mistakenly imputed to the wrong RC structure. Similar examples of defective inference can be derived from cases in which the ascription of function to the RC processor is correct, but the imputation of the LC processor's function is incorrect; in which functions are mediated by two LC processors, a lesion is made in a station connected to one but not the other processor, and one or both functions misascribed; and so on.

These considerations suggest that counter-examples, in which incorrect imputation of function to structure is made, can be demonstrated readily for both single and double dissociation using simple principles of likely interaction between brain structures. Double dissociation appears therefore to suffer similar problems of unreliability as have long been recognized to diminish the significance of single dissociations: while inferences from double dissociations can correctly ascribe functions, they can also yield incorrect imputations, and only further information can discriminate correct from incorrect cases. Hence, if the simple propagation effects of lesions derived from the simulation in 2 obtain in the real brain network, neither single nor double dissociation derive reliable information about the functions mediated by brain structures.

4. CLARIFYING ‘FUNCTION’ AND A FRAMEWORK FOR INFERENCE

The considerations in §3 suggest that conventional inference from single and double dissociation may be defective as a means of determining reliably what different parts of the brain do. On the other hand, most of the many imputations of function to particular brain structures derived from the effects of lesions have been borne out to some extent by subsequent research with a wider variety of methodologies. Testing the behavioural consequences of brain lesions suffers from well-known technical problems in inactivating structures and in testing the behavioural outcomes in a sufficiently fine-grained or insightful way (e.g. Grobstein 1990). But these technical difficulties are in many cases tractable, and reliable information derived from these methods should be very valuable in understanding how the brain mediates behaviour. We were motivated, therefore, to try to develop reliable inference for imputing function from this kind of data. However, as pointed out by Teuber (1955) ‘no degree of refinement of . . . technique can substitute for clarity of concepts referring to structure and function. . . . Unless we work on our concepts, the accumulation of facts will hinder rather than help’. Accordingly, this section re-examines concepts invoked by the search for structure–function relationships, in the pursuit of greater clarity, before going on to suggest a more formal framework for inference.

Making a lesion in a brain structure and then testing for a behavioural change is a prototypical example of a methodology for seeking structure–function relationships. As we have described, structure–function relationships presently remain rather opaque at many scales of the nervous system. However, we do not believe that this opacity arises primarily from deficiencies in current understanding of structure as it derives from neuroanatomical data. There are many uncertainties in neuroanatomical parcellation and connectivity (e.g. Colby & Duhamel 1991; Stephan, Hilgetag, Burns, O’Neill, Young & Köttler, this issue; Young et al. 1995; Hilgetag, Burns, O’Neill, Scannell & Young, this issue) but these are, in
the main, experimentally tractable problems, rather than arising from failures of clarity in the concepts being applied. Conversely, there seems to us a lack of clarity in what is meant by ‘function’. This confusion makes connections between brain structure and ‘function’ difficult to specify rigorously. We discriminate at least five different, partially overlapping senses of function in frequent but conflated use, and think it instructive to try to disentangle these different senses of function.

Function appears to be applied in at least the following different senses: the evolutionary biological sense, of function as survival function, \(f \); function as a discrete local property, \(f \); function in the context of the network, \(f \); function in the sense of the function of the global nervous system, as in its behaviour, \(f \); and function in the formal sense of a mathematical mapping between input and output, \(f \). These different senses of function are now discussed in turn.

(i) Function (evolutionary, \(f \)). This sense of function is concerned with the presumed evolutionary fitness benefits conferred by particular structures. We might ask of a structure, for example, what advantage it gives its bearer. In this sense, the function of some structure or organization is related to the selective advantage bestowed, eventually in terms of enhanced survival and reproduction, relative to an individual with a different structure or organization. A function (\(f \)) of the tectospinal tract might thus be to support differential survival and reproduction through improved eye–claw coordination, given that its relative size correlates with predatory habits (Barton & Dean 1993). Similarly, a function (\(f \)) of the parvocellular compartment of the lateral geniculate nucleus might be to support differential survival and reproduction through improved ability to select ripe fruit using colour vision (Barton 1998). This sense of function, in terms of fitness benefits or survival function, should converge with some of the senses of function below. This is because neural systems are biological mechanisms, and the only known way for biological mechanisms to come about is by selection acting on variability. Hence, characterizing function in relation to the selection pressures that have acted and act to adapt neural systems should relate closely to more causal aspects of function (e.g. Cosmides & Tooby 1995) since, in general, neural systems are what selection has caused them to be and they do what selection pressures require of them.

(ii) Function as a discrete local property (\(f \)). This sense of function concerns the function of a component of a system when considered as an isolated element, disconnected from the system in which it is normally embedded. Consider, for example, the printed circuit board of a radio. If we were to clip out a capacitor from it, we might say that the capacitor’s function is to store charge. This description of its function might be wholly different when made in the context of the rest of the circuitry (see below). In the same way, if we were to consider a single neuron in isolation from the networks that embed it in the brain, we might say that its function (\(f \)) is to integrate its inputs and produce an output spike stream contingent on those inputs.

(iii) Function (in context, \(f \)). This sense concerns the function of a component in the context of the network that surrounds it. Hence, if we were to resolder the capacitor whose \(f \) was to ‘store charge’ back into the radio, we might now say of it that its function is to act as a high-pass filter to aid tuning into different radio stations. In the same way, the function of a brain component in this sense can be understood only in the context of the wider structure of the network of which it is a part. Hence the function (\(f \)) of V4, for example, is determined by the nature of its inputs, its internal computations, its extrinsic connectivity and the nature of the rest of the network, which determines the role of this structure in the global information processing economy.

(iv) Function (global, \(f \)). Function in this sense relates to the behaviour of the whole animal. We might say that orientating to food items in the left hemifield is a function (\(f \)), and that orienting right is another function (\(f \)). These functions could be fairly complex, since this sense of function concerns anything an animal can do. Many such functions can readily be characterized in terms of inputs, internal computations, including the retention of information over time, and behavioural output.

(v) Function (formal–mathematical, \(f \)). This sense of function is the literal one, concerning the mapping of inputs on to outputs and the transfer function involved in this process. Thus one might treat the function of V1 by examining the mapping of its inputs from the LGN, V2, V3, V3A, V4, V4t and MT (V5) on to its outputs to the LGN, V2, V3, V3A, V4, V4t and MT. Similarly, one might treat the global function of the whole animal, for example, during psychophysical performance or an experiment on orientating behaviour, by examining the mapping between input and output. Indeed, this sense of function could apply to the whole animal, and any processor, set of processors or subprocessor within the brain, provided that the input, mapping and output of each function are sufficiently well characterized as to be capable of mathematical specification.

Which of these different senses of function, or which explicit combinations of them, are the most useful in considering brain structure–function relationships? We turn first to the usefulness of function in the discrete, local sense (\(f \)). To explore the relationship between structure and \(f \) for a component, the component must be capable of being considered both structurally and functionally discrete: that is, there must be an interface external to the component at which it can be separated from the remainder of the system. Consider, for example, an electronic circuit board, in which the components (e.g. chips) are perfectly discrete and their extrinsic connectivity is just that—extrinsic. Solder can be applied at the interfaces between components, and between the components and the circuitry, to join them to the rest of the system. In the case of neuronal microcircuits and all more molar structures in the nervous system, however, there is no external
interface at which one could imagine a neural solder being applied. Extrinsic projections, such as corticocortical projections from neurons with distant cell bodies, reach right into the circuits themselves, and in that way form an intrinsic part of them. Neuronal circuits, including microcircuits, are themselves formed in part by synapses made by cells with distant cell bodies, or are otherwise intimately affected by distantly derived factors. A consequence of this feature of brain organization is notable in modelling studies: modelling small patches of isolated cortex, for example, always involves setting arbitrary boundary conditions that do violence to the actual processing architecture in the real brain, simply because a substantial number of the synapses in any volume of tissue are made by neurons with distant cell bodies. Hence, in the case of the brain, there may be little benefit in defining a local function for a multineuronal component, since removal of its 'extrinsic' connectivity renders a different component. Supra-neuronal structures are not discrete, and so do not have functions in this sense. Above the level of the single neuron, therefore, \(f \) may not be a useful concept.

Function in the evolutionary sense (\(f \)) seems more readily applicable to brain structures and systems. During the past two decades strong progress has been made in analysis of the evolutionary ecology of animal behaviour (e.g. Krebs & Davies 1978, 1997), and results in that area provide a functional (\(f \)) framework that will aid understanding of the causal aspects of function, which are of primary interest to neuroscience (Cosmides & Tooby 1995). However, most attempts to relate evolutionary function to neural structure have been focused on the sensory periphery and on relatively simple aspects of animals' ecology. While the adaptation of retinal photopigments to the spectral properties of important fruit items has been characterized (e.g. Osorio & Vorobyev 1996), for example, much less is known about how central neural systems are adapted to mediate adaptive behaviour in foraging, mate choice, anti-predator vigilance, sexual signalling or the many other aspects of animals' ecology which are now known to be under strong selection pressures. Part of the problem in relating evolutionary function to central brain structures is that evolutionary studies have largely been undertaken in rather many species for which there is relatively little detailed neuroanatomy or neurophysiology and, conversely, that detailed neuroscientific investigations have largely been undertaken in a small number of species that have not always formed the primary foci for studies in behavioural ecology (but see Turner & Bateson 1986). Hence, detailed functional information on a species' ecology and behaviour is often accompanied by relatively crude neuroscience, and vice versa. Bringing the potentially great information from evolutionary ecology to bear on brain systems will require a concentration of both types of study on the same species. Presumably, these should initially be the laboratory species on which there is already a wealth of neuroscientific information, since this information takes much longer to acquire than does information about ecology and behaviour. At present, however, the salience of evolutionary considerations to understanding brain structure–function relationships is limited by this lack of concordance in the species being studied.

Neuroscientific discussions of the functions of multi-neuronal groupings, such as cortical areas or thalamic nuclei, implicitly use a sense of function closest to \(f \) (function in the context of the system), although the term is most often used with negligible recognition of the dependence of this concept on distributed and contextual factors, such as extrinsic connectivity, the organization of the networks in which structures are embedded and the dynamic system-wide context in which a structure's computations are performed. The concept of the function of a brain component being understood in the context of the nature of its inputs, its internal computations, its extrinsic connectivity, and the structure and dynamics of the rest of the network, which eventually determine the role of the structure in behaviour is, for the present purposes, sufficiently precise to allow a formal specification. Indeed, the literal sense of function, as a mathematical mapping between inputs and outputs, can be applied to the function of each constituent structure by employing terms for inputs, the mathematical mapping between these inputs and a structure's outputs, and for interactions between all structures as specified by their connectivity. Similarly, global function, \(f_g \) pertaining to the behaviour of the whole animal, can also often be characterized in terms of inputs, behavioural output and the mapping between them.

These more explicit specifications of what is meant by function permit a more formal framework for exploring the relationships between brain structure and function. Our aim remains to derive valid rules of inference for imputing function to structure in the brain. Ideally, such rules of inference should be derived from a mathematical treatment of the functions of brain structures, the function of the whole animal as manifest in its behaviour and the relationship between these functions. For the present, we formulate the problem as follows. Consider a whole-animal function, \(f_g \), such as orientate left to food items presented in that hemifield. This function could be captured formally as a mapping between stimuli presented to the left visual field and motor output which moves the animal to the appropriate location. We then consider any such global function \(f_g \) to be delegated among the processors in the brain in such a way that some set of processors' functions (\(f_p \)) are sufficient to generate the global mapping observed. Each processor's function \(f_p \) could also be captured formally as a mapping between its inputs and outputs in the context of the connectivity and dynamics of the system. Each structure's function will bear a relationship to the global system function, which could be captured quantitatively by the loading of each structure's function on the global system function being tested. The problem of imputing function to neuroanatomical structures on the basis of the effects of brain lesions then becomes the task of discovering the loadings of structures on the global function through observations of the effects on \(f_g \) of lesioning the network; that is, the problem of determining the loadings of structures' \(f_s \) on \(f_g \) from lesion-generated changes in \(f_g \).

Loadings in this framework estimate the quantitative importance of a structure that bears a particular loading for mediating that function. A high loading signifies that a particular structure is important to mediating the function.
In the limit case, a single processor might mediate a global function by itself, so possessing a loading of 1.0. In this case, its inputs, computations and outputs would be sufficient for the mapping between external input and behavioural output to be undertaken locally by the processor \(f = f_s \). This would require the processor to possess the correct connectivity, sufficient activity and appropriate information, for the following reasons. A processor that possessed the appropriate information and could broadcast it with sufficient activity could not mediate the function if its outputs were not directed to the correct downstream structures (e.g. motor structures). Hence connectivity is a determinant of the importance of a structure in mediating a behavioural function. Similarly, a processor with inputs sufficient to acquire the necessary information, and outputs bearing correct information and directed to appropriate structures, could not mediate the function if its activity were so low that its output signal could not affect processing in its targets. Consequently, activity is a determinant of the importance of a structure in mediating a behavioural function. Furthermore, a processor with appropriate connectivity from inputs and to outputs, capable of broadcasting its activity with sufficient gain to affect processing in its targets, could not mediate the function if its outputs were void of information or were disinformative. Information is thus a determinant of the importance of a structure in mediating a behavioural function. Hence, at least three factors determine the loading of a structure’s function on the global function. These loadings are scalar quantities, however, and capture only the importance of a structure to the mediation of a particular behavioural function. Loadings do not capture how or what the processor contributes to the mediation of a behaviour. We assume that behavioural functions are not often mediated equipotentially by very many different structures with roughly equal low loadings, and we note that the same structure can readily possess different loadings on different global behavioural functions.

5. A WORKED EXAMPLE OF INFERENCES FROM BRAIN LESIONS

In § 4, we attempted to clarify useful concepts of function. Using this clarification, we set out a more formal approach to imputing function to structure on the basis of brain lesions. The present development of this framework is shown without mathematical formulation, and we now turn to a worked example of the use of this framework to show more practically how it could be applied. To do this we examine inferences about the locations of function relating to a simple network that reproduces intact, lesioned and paradoxically restored orientating behaviour (after Hilgetag et al. 1999), and seek to determine whether the task of discovering the loadings on the behavioural function of particular structures by lesioning the network is tractable in this simple system.

Neurologically intact cats can direct their attention to food items presented anywhere in their visual fields. Cats with unilaterally lesioned or inactivated parietal cortex fail to orientate to visual stimuli appearing in the contra-lesional hemifield (Sprague 1966; Payne et al. 1996a,b). The same failure is apparent after unilateral lesion, or inactivation, of the superior colliculus (Lomber & Payne 1996). However, Sprague found that the visual hemi-extinction induced by damage to one posterior cortex in the cat can be paradoxically reversed by subsequently damaging further structures, in addition to the primary lesion. Orientating can, for example, be restored by secondary lesions in the superior colliculus on the contra-lesional side (Sprague 1966). Similarly, paradoxical restorations of function after bilateral inactivation of the cortical sites and bilateral inactivation of the colliculi occur, demonstrating that subsequent inactivation at the same level as the primary lesion can restore performance (Lomber & Payne 1996). These results form a complex, and somewhat perplexing and counter-intuitive, set of effects, which are nevertheless experimentally robust.

We have previously developed a simple model based on known connectivity to account for these perplexing results (Hilgetag et al., 1999). The details of the model help to explain, in addition to the results above, the slower and more partial restoration of function that follows section of the commissure of the superior colliculus and the failure to restore orientating function to the far periphery following lesions that otherwise restore function (Hilgetag et al. 1999). An even simpler account, however, is sufficient for intact orientating, unilaterally lesioned impairments in orientating, the paradoxical restoration of function in the Sprague paradox, and the paradoxical restorations in both the cortical and collicular Payne–Lomber paradoxes (see below).

Consider a system in which two bilateral systems exist, one cortical and the other subcortical, and in which balanced competition between sides is the basic principle of operation. In the intact system, a stimulus presented to one visual hemifield produces greater activity in both cortical and subcortical structures contralateral to it. This greater activity on one side engages motor output and unilateral orientating behaviour is emitted appropriately. Any single unilateral lesion so diminishes activity on that side that, even with the benefit of stimulus-related activity, activity on that side is insufficient to overcome baseline activity on the other. Hence, no appropriate capture of motor systems takes place, and appropriate orientating is abolished. Any pair of contralateral lesions, however, will render a bilaterally balanced system. Any such system can be unbalanced by stimulus input, and so capture motor systems appropriately, reinstating correct orientating. For example, bilateral inactivation of the colliculi yields a balanced bilateral system comprising the two parietal structures and restored orientating as in the Payne–Lomber collicular paradox (Lomber & Payne 1996; Hilgetag et al. 1999). Bilateral inactivation of the two parietal cortices yields a balanced bilateral system comprising the two colliculi and restored orientating as in the Payne–Lomber cortical paradox (Lomber & Payne 1996; Hilgetag et al. 1999). Similarly, unilateral inactivation of parietal cortex, together with inactivation of the colliculus contralateral to it, yields a balanced bilateral system comprising one cortical and one subcortical processor and restored orientating as in the classical Sprague paradox (Sprague 1966).

Figure 3 provides a diagrammatic representation of the simple network required to implement these effects. Consider that the network implements two global

Phil. Trans. R. Soc. Lond. B (2000)
functions, orientate left \(f_{L-L}(x) \), and orientate right, \(f_{R-R}(x) \), on a sensory input, \(x \). Stimuli can either be presented on the left, \(x = l \), or on the right, \(x = r \), or can be absent or central. Each global function has two discrete output states. The outputs of \(f_{L-L}(x) \) are orientated right, \(r \), or do nothing, null. The outputs of \(f_{R-R}(x) \) are orientated left, \(l \), or do nothing, null.

\[
\begin{align*}
 f_{L-L}(x) &= \begin{cases}
 l & \text{when } x = l \\
 \text{null} & \text{when } x \neq l
 \end{cases} \\
 f_{R-R}(x) &= \begin{cases}
 r & \text{when } x = r \\
 \text{null} & \text{when } x \neq r
 \end{cases}
\end{align*}
\]

Consider that the left and right colliculi and cortices have component functions that contribute to the global functions, \(f_{g}(x) \), equally in the intact state. Here the component functions, \(f_{c} \), of the right cortex and colliculus, and left cortex and colliculus are given by \(f_{c,r}(x) \), \(f_{c,l}(x) \), \(f_{c,r}(x) \), and \(f_{c,l}(x) \), respectively.

\[
\begin{align*}
 f_{g}(x) &= f_{c,r}(x) + f_{c,l}(x) + f_{c,r}(x) + f_{c,l}(x) \\
 f_{g}(x) &= f_{c,r}(x) + f_{c,l}(x) + f_{c,r}(x) + f_{c,l}(x)
\end{align*}
\]

In the intact state, with single lateralized stimuli, only the right-hand components’ functions have absolute loadings on the global function orientate left, \(f_{L-L}(x) \), and both such loadings are equal (i.e. each has a loading on that function of +0.5). Corresponding loadings exist for the left structures on global function orientate right, \(f_{R-R}(x) \). Because of the balanced, functioning systems yielded by the cortical and subcortical lesion pairs (i.e. the classical Sprague paradox cases), the share in the global functions of the collicular and cortical stations must be about equal, and the loadings must be 0.5 each. Were it otherwise, some degree of imbalance, manifest in an associated degree of impaired contralateral orienting would be evident in these cases.

The relationships between the component functions and sensory input are specified by the following equations, that embody the competitive nature of the interaction between the left and right sides:

\[
\begin{align*}
 f_{g,l}(x) &= \begin{cases}
 +1 & \text{when } x = r \\
 0 & \text{when } x \neq r
 \end{cases} \\
 f_{g,r}(x) &= \begin{cases}
 +1 & \text{when } x = r \\
 0 & \text{when } x \neq r
 \end{cases}
\end{align*}
\]

We now reformulate the global functions, \(f_{g,l}(x) \) and \(f_{g,r}(x) \), in terms of the sum of the component functions, \(f_{c}(x) \).

\[
\begin{align*}
 f_{g,l}(x) &= \begin{cases}
 \text{null} & \text{when } \sum f_{c} \leq 0 \\
 0 & \text{when } \sum f_{c} > 0
 \end{cases} \\
 f_{g,r}(x) &= \begin{cases}
 \text{null} & \text{when } \sum f_{c} \leq 0 \\
 0 & \text{when } \sum f_{c} > 0
 \end{cases}
\end{align*}
\]

What lesions would be required to recover the loadings of the component functions, \(f_{c}(x) \), on each of the global functions, \(f_{g,l}(x) \) and \(f_{g,r}(x) \), in this ideally simple, though empirically motivated, situation?

First, any single lesion will abolish contralateral orientating, because it yields an unbalanced system that is not captured appropriately by stimulus-related activity. Consider, for example, a lesion in the right superior colliculus abolishing the component function \(f_{c,r}(x) \). If we present a stimulus \(x = l \), on the left, then the sum of the outputs of the component functions \(\sum f_{c}(x) = 0 \) (equation (5)). Therefore, the animal will not orient either left or right (equation (6)) and the global function \(f_{g,l}(x) \) has been abolished. However, a stimulus presented on the right will still produce the correct orientating response, as the sum of the outputs of the component functions \(\sum f_{c}(x) = -2 \) (equation (6)). This would lead to the wrong conclusion, that the component function \(f_{c,l}(x) \) had a weighting of 1 on the global function \(f_{g,l}(x) \). Lesioning a single structure is therefore insufficient, even in this very simple system, echoing from a different perspective the inferential inadequacy of single dissociations.

Second, double dissociations of \(f_{g,l}(x) \) and \(f_{g,r}(x) \) formed by pairs of independent single lesions of contra-
lateral structures, inherit precisely the same incorrect attribution as was made for the single lesions and single dissociations that comprise each double dissociation. Each constituent single dissociation still incorrectly suggests a loading of 1.0 for any single structure. Hence, double dissociations do not provide any further basis for recovering the loadings, echoing from this different perspective their inferential inadequacy.

Third, pairs of lesions will have variable effects, depending on whether the lesions are ipsi- or contralateral. Pairs of ipsilateral lesions will abolish orientating to the contralateral hemisphere, while contralateral lesions will produce paradoxical restoration of function (equations (5) and (6)). Therefore, ipsilateral paired lesions suggest a summed loading of one on the global function for both the lesioned structures (correct). Contralateral lesions suggest a summed loading of zero of the lesioned structures on the global function (incorrect).

However, the cases in which contralateral pairs involve collicular and cortical lesions show intact orientating functions. These cases reveal that the colliculus and cortex contribute equally to each f, and so must have equal loadings on each global function. Because there are only two structures on each side, this indicates that the loading of each structure's function on the contralateral global function must be 0.5 (correct).

Fourth, any odd number of lesions will always yield the abolition of orientating to the side contralateral to the larger number of lesions. For example, simultaneous lesions to the left cortex and colliculus and the right cortex will abolish component functions $f_{c,cr}(x)$, $f_{c,cl}(x)$ and $f_{c,rl}(x)$, leaving only $f_{c,cl}(x)$. This remaining right colliculus will allow orientating to the left (equations (5) and (6)). This will suggest a loading of one on the global function $f_{c,cl}(x)$ for the single remaining colliculus (incorrect). Hence, just as for single lesions, odd numbers of lesions do not allow the recovery of the true loadings in the intact system.

Fifth, quadruple lesions will abolish both global functions in this simple network (it remains to be seen what this pattern of inactivation will yield in the real brain), providing no further help in recovering the precise individual loadings, but will correctly identify the summed loadings of all the structures.

Hence, in this minimal system there are lesion combinations that can recover the loadings precisely, and so impute function to structure reliably. In this case, neither single nor double dissociations provided the necessary information, but the paradoxically restored cases, particularly those involving lesions in structures that were not bilateral mirrors of one another, allowed recovery of the loadings. However, the analysis above represents a decomposition of the system close to being complete. The paradoxical restoration cases alone would not have provided enough information to recover the loadings without knowledge of the connectivity of the system, and without knowledge of the importance of balanced competition in this system, which latter was derived in part from the effects of the other lesion combinations. On the one hand, then, these results suggest the optimistic conclusion that there are circumstances in which functions can be imputed to structures reliably. On the other hand, a near-complete decomposition of this simple network was necessary to impute functions to its structures. This suggests that the problem of imputing function to structure from lesion effects may not be tractable by these means alone in the real brain, where a complete decomposition cannot be envisaged. It may, however, be possible to use other information about the organization of the network to reduce the necessity for exhaustive search. Structures and systems likely to possess negligible loadings on the global functions being tested could be excluded on the basis of membership of different connec
tional groupings (e.g. Burns and Young, this issue; Hilgetag et al., 1999), or by reference to activation during testing (see §6).

6. DISCUSSION

Very many insights into which brain component does what have been derived from examining what people or other animals do less well when particular brain structures are damaged. Whether this information is reliable, and whether reliable information can be gathered in future from this approach, are important issues. To address these issues, we have attempted to derive elements of a relationship between this process of imputation of functions to structures and the connectivity that we assume determines in part the effects of localized lesions. Through simulating the effects of lesioning stations in the thalamocortical network of the cat (§2), we determined three likely features of interactions between brain structures after a lesion. The consequences of these effects for the conventional patterns of inference in single dissociation emphasized the concerns from empirical studies that such inferences will sometimes be invalid. In addition, the consequences of the lesion effects, in common with results from empirical studies, suggested that double dissociation is no more reliable a means of imputing function to structure than single dissociation.

The characteristics of electronic circuits, and the limitations of what can be determined about the roles of their components, have been described by electrical engineers (e.g. Lewis 1970). For circuits with properties like those presumed for the brain, such as the importance of the context of the rest of the network, the prognosis for determining the roles of individual components from alterations of the behaviour of the system is extremely poor (e.g. Lewis 1970). In the most likely case, complete decomposition would be required. Buoyed, however, by the fact that imputations of function in the brain derived from lesion experiments have often been supported by other methods, we attempted to clarify the concepts of function and explored a more formal approach for imputing function to structure on the basis of the effects of brain lesions (§4). We found in §5, through a worked example of this approach, that it was possible to recover detailed and reliable information on the importance of particular structures to particular functions. Unfortunately, though, a comprehensive decomposition of our simple network appeared necessary to accomplish this. Because the large number of lesion experiments required to take the same approach to the brain cannot be envisaged, the prospects for deriving reliable imputations of function to structure in the brain by these means do not appear great.

Phil. Trans. R. Soc. Lond. B (2000)
One conclusion, then, is that our results suggest that all presently conceived rules of inference, both conventional and the more formal approach we have developed above, are inadequate to impute functions to brain structures on the basis of lesion effects. This is as predicted from systems theory (e.g. Lewis 1970). Another conclusion, however, is that the propagated effects of lesions, the reasons for the failure of conventional inferences and our more formal approach suggest a possible way forward. Reliable inference appears to require exhaustive search through lesions of every station. Meeting this requirement is plainly impractical in the brain. Multiple sources of information, though, could be brought to bear on two key issues. Information from other methodologies might first be used to exclude many structures from the required search, on the grounds that their loadings on the behavioural function are likely to be negligible. Decomposition by inactivation could then be brought within practical bounds. Information from other methods might also be used in conjunction with inactivations to determine the direct and indirect effects of the inactivations on other stations. We note in this context that reverse engineering, for example of a faulty amplifier made elsewhere, is typically carried out by reference to more information than the changes in input-output characteristics on removal of internal components. In general, a known signal is introduced, and a combination of electrical search for the propagation of the signal through the circuits, removal of components and observation of the output is undertaken. A circuit diagram that describes the connectivity and organization of the amplifier’s subsystems is often very helpful, mainly through excluding whole regions of the system from consideration when faults are of a particular kind.

An analogous strategy could be implemented in the brain. Successors to the framework we developed in §4 could be used to specify the problem of identifying the roles of brain processors in some behavioural function. Information on connectivity, such as indications of strongly intra-connected clusters of areas (e.g. Hilgetag, Burns, O’Neill, Scannell & Young, this issue; Young et al. 1995∥Burns & Young, this issue), could be used in conjunction with physiological information to identify likely stations and systems of interest, and systems unlikely to be strongly involved in the function. Imaging approaches could perhaps be employed to further determine or cross-validate those stations and systems less involved in mediating a particular function, although not all the links between imaging signals, blood, metabolism, neuronal population dynamics and functional information processing changes are established, and some seem not to be straightforward (Scannell & Young 1999). Patterns of inactivation effects, particularly in combination with concurrent information on activity, could then be interpreted rigorously in the context of an analytical framework. In this framework, knowledge of the connectivity is a necessary but insufficient condition for reliable inference, which in this case would be constrained by multiple, interacting sources of experimental information. In this way, a bridge between connectivity and the effects on behavioural function of lesions might be used to demonstrate principles and test concepts about a wide variety of structure–function relationships and suggest further experiments using a wide variety of neuroscience methodologies.

REFERENCES

Monakow, C. 1914 *Die Lokalisation im Grosshirn und der Abbau der Funktionen durch corticale Herde.* Wiesbaden: Bergmann.

Shallice, T. 1988 *From neuropsychology to mental structure.* Cambridge University Press.

