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A major goal of evolutionary biology is to identify the genotypes and phe-

notypes that underlie adaptation to divergent environments. Stickleback

fish, including the threespine stickleback (Gasterosteus aculeatus) and the

ninespine stickleback (Pungitius pungitius), have been at the forefront of

research to uncover the genetic and molecular architecture that underlies

phenotypic diversity and adaptation. A wealth of quantitative trait locus

(QTL) mapping studies in sticklebacks have provided insight into long-

standing questions about the distribution of effect sizes during adaptation

as well as the role of genetic linkage in facilitating adaptation. These QTL

mapping studies have also provided a basis for the identification of the

genes that underlie phenotypic diversity. These data have revealed that

mutations in regulatory elements play an important role in the evolution

of phenotypic diversity in sticklebacks. Genetic and molecular studies in

sticklebacks have also led to new insights on the genetic basis of repeated

evolution and suggest that the same loci are involved about half of the

time when the same phenotypes evolve independently. When the same

locus is involved, selection on standing variation and repeated mutation of

the same genes have both contributed to the evolution of similar phenotypes

in independent populations.

This article is part of the themed issue ‘Evo-devo in the genomics era,

and the origins of morphological diversity’.
1. Introduction
The modern tools of molecular genetics and genomics have enabled a

revolution in evolutionary biology. With these tools, we are now able to inves-

tigate long-standing questions about the genetic and molecular changes that

underlie phenotypic diversity in natural populations. Recent research in a

number of plant and animal systems has started to provide insight into funda-

mental questions about the genetic and molecular architecture of phenotypic

evolution, such as: (i) Does phenotypic evolution occur through mutations of

small or large effect?; (ii) Does genetic linkage and/or pleiotropy facilitate phe-

notypic evolution?; (iii) Does phenotypic evolution occur through changes in

coding or regulatory regions of genes?; (iv) When the same phenotype evolves

independently, are the same or different genetic changes involved?; and (v)

When the same genetic changes are involved, is this due to standing variation

or new mutation?

The stickleback family (Gasterosteidae) of fish provides a remarkable oppor-

tunity to address these long-standing questions. In particular, the ecology,

evolution, morphology, behaviour and physiology of the threespine stickleback

(Gasterosteus aculeatus) have been intensively studied for decades [1–3]. The

ninespine stickleback (Pungitius pungitius), which diverged from threespine

stickleback approximately 13–16 Ma [4], has more recently been developed as

an evolutionary model system [5]. In both species, ancestral marine populations
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adapted to diverse freshwater habitats across the Northern

Hemisphere at the end of the last glacial period, approxi-

mately 15 000 years ago [2]. When comparing extant marine

and freshwater populations, extensive phenotypic diversity

is observed in morphological, behavioural and physiological

traits (figure 1) [5,6]. Within freshwater, threespine stickle-

backs have further adapted to different habitats, resulting in

phenotypically divergent ecotypes that have been key in the

study of speciation [7,8].

With this wealth of natural history studies as a backdrop

and the development of genetic and genomic tools for the

threespine stickleback, this system has emerged as an evol-

utionary ‘supermodel’ [9]. Initially, a genetic linkage map

was developed for threespine stickleback using a genome-

wide panel of microsatellite markers, which enabled quanti-

tative trait locus (QTL) mapping studies to uncover the

genetic architecture of phenotypic differences between popu-

lations adapted to different environments [10]. In order to

facilitate identification of the genes and molecular changes

that underlie QTL for phenotypic differences between popu-

lations, a number of additional genomic resources, such as

large-insert genomic libraries and physical maps, were devel-

oped for the threespine stickleback [11–13]. These genomic

tools were fundamental for the high-quality assembly of the

genome of a freshwater threespine stickleback female from

Alaska [14]. The development of next-generation sequencing

technologies has further revolutionized stickleback genetics

and genomics. One important technique that has now been

widely used in evolutionary genomic studies, restriction

site-associated DNA sequencing (RAD-seq), was developed

using stickleback as one of the test cases [15,16]. Using such

next-generation sequencing approaches to create high-density

genetic linkage maps has further improved the initial genome

assembly in threespine stickleback [17,18] and enabled com-

parison of the threespine and ninespine stickleback

genomes [19]. Finally, transgenic tools have been adapted

for use in sticklebacks [20–22]. These genetic and genomic

tools have enabled dozens of QTL studies and the identifi-

cation of genes and mutations that underlie phenotypic

diversity among stickleback populations (electronic sup-

plementary material, tables S1–S3). Here, we summarize

how these studies in stickleback have provided new insights

into the questions posed above about the genetic and molecu-

lar architecture of phenotypic evolution.
2. Identification of quantitative trait loci reveals
the genetic architecture of phenotypic
diversity in sticklebacks

To date, there have been 28 QTL studies published in three-

spine stickleback [10,18,23–48] and four in ninespine

stickleback [49–52] (electronic supplementary material,

tables S1 and S2). Most of these studies (19 in threespine,

3 in ninespine) have focused on divergence between the

marine and freshwater ecotypes, with a smaller number of

studies investigating divergence between freshwater ecotypes

(benthic-limnetic, lake-stream) or between two marine

species in Japan (G. aculeatus, G. nipponicus). Here, we have

loosely grouped the phenotypes studied thus far in QTL

mapping studies into nine categories based on their putative

function (electronic supplementary material, tables S1 and
S2). The overwhelming majority of these QTL mapping

studies have focused on morphological phenotypes, particu-

larly skeletal and body shape traits that are thought to be

important for adaptation to differences in feeding, predation

and flow regimes among marine and freshwater habitats.

Fewer studies have examined other morphological traits,

such as pigmentation, or behavioural traits. Thus, QTL ident-

ified in threespine stickleback do not encompass many types

of morphological, behavioural and physiological differences

among stickleback populations or all axes of habitat diver-

gence. However, this large QTL dataset does provide an

opportunity to ask what we have learned so far about the

genetic architecture of phenotypic diversity in stickleback,

and how this has informed our general understanding of

the genetics of adaptation.

(a) Does phenotypic evolution occur through mutations
of large or small effect?

A long-standing debate in the field of evolutionary genetics

has been whether mutations of large or small effect are

more likely to contribute to adaptation [53–56]. In a model

that somewhat reconciled the theoretical debate, Orr [56] pre-

dicted that a few mutations of large effect and many of

smaller effect would contribute to the process of adaptation.

Previous analyses of the distribution of effect sizes of QTL

identified for body shape and skeletal traits in stickleback

provide qualitative support for Orr’s model [29,33,42,47].

With data on the per cent variance explained (PVE) for

1034 QTL from the 28 published QTL studies in threespine

stickleback, we now have a larger sample size to examine

this distribution (figure 2). These distributions look very

much like what Orr had predicted, and there are no qualitat-

ive differences in the distributions among the nine trait

categories. Of course, there are several caveats to this analysis

[57]. First, Orr’s predictions are specifically about the genetic

changes that underlie fitness during adaptation. Although

many of these phenotypes studied are predicted to be adap-

tive, given that they have evolved repeatedly in independent

populations, the fitness effects of most of these phenotypes

have not been explicitly tested. Second, PVE for small-effect

loci near the limit of detection is generally overestimated in

crosses with fewer than 500 progeny [58], and many of

these QTL studies have analysed crosses with fewer than

500 individuals (electronic supplementary material, table

S2). Third, most of the studies have only used one individual

per population to establish crosses, and so results may not be

representative of the genetic variance within the population.

Finally, QTL are large regions that harbour many genes,

and we do not know the effect sizes of individual mutations,

with the few exceptions discussed below. Despite these

caveats, we can conclude that phenotypic evolution of indi-

vidual traits in stickleback occurs through a few mutations

of large effect and many more of smaller effect.

(b) Does genetic linkage and/or pleiotropy facilitate
phenotypic evolution?

Theory has suggested that adaptation to new environments

can be facilitated by tight linkage of multiple co-selected

traits [59–61]. To test whether particular genomic regions

are enriched for the presence of QTL, we examined the distri-

bution of 1104 QTL with a known genomic location from the

http://rstb.royalsocietypublishing.org/
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Figure 1. Phenotypic differences between marine and freshwater threespine sticklebacks. The top photos show a representative marine (a) and freshwater (b) male
with the nuptial coloration (red throat, blue eyes) typically found in threespine stickleback males during the breeding season. Differences in overall pigmentation,
body shape and body size between marine and freshwater sticklebacks are apparent in these photos; additional morphological, behavioural and physiological differ-
ences between marine and freshwater sticklebacks are not depicted. The bottom photos show a representative marine (c) and freshwater (d ) fish stained with
alizarin red to highlight the difference in the number of bony lateral plates found along the flank of the fish; scale bar, 10 mm. Photos provided by
Jun Kitano and Seiichi Mori.
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28 QTL studies in threespine stickleback. The distribution of

all QTL across the 21 pairs of stickleback chromosomes is sig-

nificantly different from the random expectation, based on

either the total length of the chromosome or the number of

genes on the chromosome (electronic supplementary

material, table S4). A significantly biased distribution of

QTL is also observed for feeding QTL (n ¼ 422), body-

shape QTL (n ¼ 399) and defence QTL (n ¼ 175); there are

not enough QTL in other trait categories to perform statistical

analyses. Although the current dataset might be biased

because particular types of traits have been more well studied

than others or mapped in multiple crosses, some interesting

patterns emerge when examining which chromosomes have

significantly more or fewer QTL than expected (figure 3; elec-

tronic supplementary material, table S4). Chromosomes III,

VI and XV consistently have fewer QTL than expected. Inter-

estingly, chromosome XIX, which is the sex chromosome in

threespine stickleback [62] has somewhat fewer QTL than

expected. This is despite theoretical predictions that genes

important for adaptation and speciation might be located

on sex chromosomes [63], and previous studies demonstrat-

ing that QTL for traits important for reproductive isolation

between the Japan Sea (G. nipponicus) and Pacific Ocean (G.
aculeatus) sticklebacks map exclusively to the sex chromo-

somes [30,43]. However, many QTL studies have ignored

the sex chromosome or have not properly controlled for

sexual dimorphism in their analyses. Thus, asking whether

QTL for phenotypic diversity are commonly found on sex

chromosomes requires future analyses.

One of the strongest patterns to emerge is that chromo-

somes IV and XXI have more QTL than expected for all

QTL combined, and for all trait classes analysed. Three

other chromosomes have more QTL than expected when con-

sidering all QTL, but each of these three chromosomes is

associated with a single trait category: QTL for feeding

traits are enriched on chromosome XX, QTL for body shape

traits are enriched on chromosome XVI and QTL for defence

traits are enriched on chromosome VII. Although it is
predicted that inversions might facilitate clustering of adap-

tive phenotypes [59–61], only the trait cluster on

chromosome XXI is associated with a known inversion

between marine and freshwater populations [14], suggesting

that other mechanisms might be important for the clustering

of QTL in stickleback. This significant clustering of QTL does

suggest that linkage and/or pleiotropy facilitates phenotypic

evolution in stickleback. However, it is unknown whether the

clustering of QTL is because a single genetic change has

pleiotropic effects on multiple phenotypes, or because there

are many linked genetic changes that each affect one or a

few phenotypes. Identification of the genes that underlie

these QTL, as discussed in the next section, will allow us to

address this question in the future.
3. Identification of genes reveals the molecular
architecture of phenotypic diversity in
sticklebacks

Knowledge of the genes and mutations underlying phenoty-

pic diversity is integral to understanding the dynamics of

evolutionary change. Specific genes have now been identified

that contribute to variation in seven phenotypic traits in

threespine stickleback and one in ninespine stickleback (elec-

tronic supplementary material, table S3) [25,28,38,64–70].

These phenotypes include skeletal traits important for

defence (lateral plates, pelvic spines) and feeding (tooth

number), pigmentation traits and behaviour and sensory

system traits. Although it is more difficult to identify genes

that underlie QTL of small effect, the underlying genes

have been identified for QTL with effect sizes ranging from

9.9 PVE (plate size) to essentially 100 PVE (pelvic reduction).

Because QTL mapping often identifies large genomic inter-

vals containing dozens to hundreds of genes, additional

high-resolution linkage mapping or association mapping in

wild populations has been used to narrow down the

http://rstb.royalsocietypublishing.org/
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Figure 2. Distribution of effect size for QTL identified in threespine stickleback. Per cent variance explained (PVE) was available for 1034 QTL identified in 28 studies
in threespine stickleback across nine trait categories (feeding, N ¼ 416; body shape, N ¼ 342; defence, N ¼ 170; behaviour and sensory system, N ¼ 35; swim-
ming, N ¼ 27; pigmentation, N ¼ 20; respiration, N ¼ 11; body size N ¼ 8; reproduction, N ¼ 5). Data are provided in electronic supplementary material, table
S1; 63 QTL identified in the combined scan in Conte et al. [44] were redundant and therefore removed from this analysis.
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intervals. The presence of interesting candidate genes with

known functions in other systems within the QTL regions

has also been crucial to the success of these studies. However,

it is still challenging to go from an excellent candidate gene to

demonstrating that variation in the gene is responsible for

variation in the phenotype of interest. Several studies have

used allele-specific expression assays to demonstrate that

there is differential expression of the candidate gene in a

tissue consistent with the phenotypic differences between

the populations, and that differential expression is due to

changes in cis at the gene itself, rather than to changes in

trans elsewhere in the genome [28,38,65,68–70]. However,

the gold standard for demonstrating causality between a gen-

etic change and a phenotypic change is to perform genetic

manipulations. Transgenic methods have been used to

demonstrate that variation in the Eda gene has pleiotropic

effects on variation in lateral plate number, lateral line pat-

terning and schooling behaviour [64,66,67]; variation in the

Pitx1 gene leads to loss of pelvic spines [68] and variation

in the Gdf6 gene affects lateral plate size [70].
(a) Does phenotypic evolution occur through changes in
coding or regulatory regions of genes?

In all cases so far, the genes identified in stickleback are

developmental regulators, often with lethal or highly deleter-

ious effects when the coding regions are disrupted in

laboratory organisms. It has been hypothesized that

mutations in the tissue-specific regulatory elements of such

developmental regulatory genes would be more likely to con-

tribute to phenotypic evolution because such mutations are

more likely to avoid the negative pleiotropic consequences
of mutations in coding changes in these genes [71,72]. The

data in sticklebacks are consistent with this hypothesis, in

that regulatory and not coding changes underlie variation

in the phenotypes studied thus far (electronic supplementary

material, table S3). However, the data are limited to a handful

of traits, and it will be interesting to see whether these pat-

terns hold true when genes that underlie many different

phenotypes are identified in sticklebacks and other systems.
(b) When the same phenotype evolves, are the same or
different genetic changes involved?

The repeated use of similar genes during phenotypic evolution

in disparate species suggests that there may be biases and con-

straints on the types of genes or mutations that can be used

during phenotypic evolution [73]. Sticklebacks have repeat-

edly and independently adapted to similar habitats, thereby

providing an opportunity to ask whether the same or different

genetic changes underlie similar phenotypic changes. QTL

mapping studies can provide a preliminary answer to this

question. For example, two studies have performed QTL map-

ping studies on the same suite of phenotypes in multiple

crosses from independent populations adapted to similar

habitats. Both studies find that about half of the QTL are

shared when independent populations adapt to similar

environments [44,47]. Remarkably, a meta-analyses con-

ducted on published studies that examined the genetic basis

of repeated evolution also found that the same genes were

involved in about half of the cases across a diversity of traits,

species and divergence times [73]. Of course, a major caveat

of these analyses is that these QTL are large, and the actual

genetic changes that underlie a phenotypic change might be

http://rstb.royalsocietypublishing.org/
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Figure 3. Genomic distribution of QTL identified in threespine stickleback. Genomic position data are based on the Glazer et al. [18] genome assembly for 1104 QTL
identified in 28 studies in threespine stickleback across nine trait categories (feeding, N ¼ 422; body shape, N ¼ 399; defence, N ¼ 175; behaviour and sensory
system, N ¼ 35; swimming, N ¼ 27; pigmentation, N ¼ 20; respiration, N ¼ 11; body size N ¼ 10; reproduction, N ¼ 5). For 71 QTL, PVE estimates are not
available and so were plotted in greyscale as values of 28 here. Data are provided in electronic supplementary material, table S1; 63 QTL identified in the combined
scan in Conte et al. [44] were redundant and therefore removed from this analysis, and one QTL mapped to an unassembled chromosome (chrUN) and was also
omitted from this analysis. Chromosomes with more QTL than expected are indicated with an asterisk; full results of statistical analyses are provided in electronic
supplementary material, table S4.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20150486

5

 on November 20, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
different even though the phenotypes map to an overlapping

QTL region. When the underlying gene has actually been

identified in stickleback, the results are consistent with the

QTL studies. There are cases in which the same gene is used

in independent populations and cases in which different

genes are used (electronic supplementary material, table S3).

Interestingly, both mechanisms can be involved when the

same trait evolves. For example, the Pitx1 gene is responsible

for the independent loss of pelvic structures in both threespine

and ninespine stickleback populations; however, there are also

threespine and ninespine populations with pelvic loss that is

unlinked to mutations in Pitx1 [25,49,51,68,69]. Remarkably,

it has also been suggested that variation in the Pitx1 gene con-

tributes to loss of hindlimbs in manatees [69], and variation in
other genes and pathways important for phenotypic evolution

in sticklebacks (Kitlg, Gdf6, Eda) has also been implicated in

phenotypic evolution in humans [28,70,74,75].

(c) If the same genetic changes are found, is this due
to standing variation or new mutation?

When the same phenotypes evolve in closely related popu-

lations or species, the same genes may be involved due to

repeated selection for standing genetic variation or new

mutation in these genes [76]. In sticklebacks, selection on

standing genetic variation in the marine population clearly

plays an important role in adaptation to freshwater. This

was first demonstrated with the discovery that the Eda gene

http://rstb.royalsocietypublishing.org/
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is the major locus that underlies lateral plate reduction [64], a

phenotype that is one of the hallmarks of most freshwater

stickleback populations across the world (figure 1). Sequen-

cing of the region around Eda revealed that completely

plated marine sticklebacks and low-plated freshwater stickle-

backs have very divergent haplotypes, and that the

freshwater haplotype is found at low frequency in the

marine population [64,65]. Similarly, selection on standing

variation in the marine population has also played a role in

the evolution of pigmentation [28] and likely plate size [70]

in freshwater. However, selection on standing genetic vari-

ation is not the only genetic mechanism that underlies

phenotypic evolution in sticklebacks, and new mutation is

also important. For example, multiple independent deletions

of the same enhancer in the Pitx1 gene underlie the loss of

pelvic spines that has occurred repeatedly in freshwater popu-

lations [68]. Interestingly, the Pitx1 gene is located in a region

of the stickleback genome that is predicted to be physically

fragile, suggesting that repeated evolution might also occur

via reuse of the same genes because of inherent differences

in mutation rates. Although it is still unclear whether new

mutation or selection on standing genetic variation plays a

more important role in stickleback evolution, it is clear that

these studies have led to new insights about the molecular

mechanisms that are likely to contribute to rapid adaptation

in many systems.
4. Perspectives and future directions
Much progress has been made in the 15 years since the devel-

opment of the first genetic linkage map for threespine

stickleback [10]. A major challenge for the future is to identify

the genes and mutations that underlie additional phenotypic

traits in sticklebacks. The development of new genome-edit-

ing tools like TALENs and CRISPR/Cas9 for use in

sticklebacks [22] will greatly facilitate this research, enabling

us to discern whether there are general patterns in the genetic

and molecular architecture of phenotypic evolution, at least

in sticklebacks. It will also be important to compare results

in sticklebacks to those in other systems, like those high-

lighted in this special issue [77–81], to determine whether

the genetic and molecular basis of phenotypic evolution is

contingent on the study system or whether general evolution-

ary patterns will emerge.

This review has focused on recent efforts to identify the

links between phenotype and genotype in order to understand
phenotypic diversity. However, in most cases, the fitness

effects and, therefore, adaptive significance of these genotypes

and phenotypes are unknown. With the identification of genes

that affect specific phenotypes, we now have the ability to

make connections between genotypes and fitness by placing

alternative alleles of these genes on a uniform genetic back-

ground and following these alleles in semi-natural

environments, or by tracking the fitness effects of specific

alleles in natural populations [82–85]. A complementary

approach to identify links between genotypes and fitness is

to conduct population genomic studies, which can identify

genomic regions under selection in different habitats [86].

Because these studies are unable to identify the phenotypes

that are targets of selection, there is a need to integrate results

of QTL studies with the numerous population genomic

studies that have now been conducted in sticklebacks (e.g.

[14,87–89]). By integrating QTL and genomic data, as has

been done in pea aphids and whitefish [90,91], we can identify

phenotypes that might be associated with those genomic

regions under selection. We can also learn which genomic

regions under selection are not associated with any traits

mapped to date, potentially revealing additional phenotypes

that might be under selection in sticklebacks.

Ultimately, combining these approaches will allow us to

make connections between genotypes, phenotypes and fit-

ness, to provide a more holistic understanding of the

genetic basis of adaptation [86]. Given the rich history of

evolutionary, ecological and ethological research, the excel-

lent genetic and genomic resources present, and the

collaborative stickleback community, the stickleback model

system is poised to continue to reveal many new insights

into the genetic and molecular basis of phenotypic diversity

in nature.
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Merilä J. 2014 Identification of major and minor QTL
for ecologically important morphological traits in
three-spined sticklebacks (Gasterosteus aculeatus).
Genes Genomes Genet. 4, 595 – 604. (doi:10.1534/
g3.114.010389)

42. Miller CT et al. 2014 Modular skeletal evolution in
sticklebacks is controlled by additive and clustered
quantitative trait loci. Genetics 197, 405 – 420.
(doi:10.1534/genetics.114.162420)

43. Yoshida K et al. 2014 Sex chromosome turnover
contributes to genomic divergence between
incipient stickleback species. PLoS Genet. 10,
e1004223. (doi:10.1371/journal.pgen.1004223)

44. Conte GL, Arnegard ME, Best J, Chan YF, Jones FC,
Kingsley DM, Schluter D, Peichel CL. 2015 Extent
of QTL reuse during repeated phenotypic
divergence of sympatric threespine stickleback.
Genetics 201, 1189 – 1200. (doi:10.1534/genetics.
115.182550)

45. Ellis NA, Glazer AM, Donde NN, Cleves PA, Agoglia
RM, Miller CT. 2015 Distinct developmental genetic
mechanisms underlie convergently evolved tooth
gain in sticklebacks. Development 142, 2442 – 2451.
(doi:10.1242/dev.124248)

46. Greenwood AK, Ardekani R, McCann SR, Dubin ME,
Sullivan A, Bensussen S, Tavaré S, Peichel CL. 2015
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