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To forecast marine disease outbreaks as oceans warm requires new environ-

mental surveillance tools. We describe an iterative process for developing

these tools that combines research, development and deployment for

suitable systems. The first step is to identify candidate host–pathogen

systems. The 24 candidate systems we identified include sponges, corals,

oysters, crustaceans, sea stars, fishes and sea grasses (among others). To

illustrate the other steps, we present a case study of epizootic shell disease

(ESD) in the American lobster. Increasing prevalence of ESD is a contribut-

ing factor to lobster fishery collapse in southern New England (SNE), raising

concerns that disease prevalence will increase in the northern Gulf of Maine

under climate change. The lowest maximum bottom temperature associated

with ESD prevalence in SNE is 128C. Our seasonal outlook for 2015 and

long-term projections show bottom temperatures greater than or equal to

128C may occur in this and coming years in the coastal bays of Maine.

The tools presented will allow managers to target efforts to monitor the

effects of ESD on fishery sustainability and will be iteratively refined. The

approach and case example highlight that temperature-based surveillance

tools can inform research, monitoring and management of emerging and

continuing marine disease threats.
1. Introduction
Media coverage of human emergencies caused by heat waves, severe tropical

storms, blizzards, tornados, bush fires, earthquakes and tsunamis overshadow
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the fact that acute events and chronic, gradual changes in the

environment also cause wildlife emergencies. Such emergen-

cies include disease outbreaks. Models and systems that

monitor, forecast and project environmental conditions have

thus far rarely been used to develop surveillance tools for

wildlife diseases [1]. However, significant investments in

forecasting models have created the capability to develop

such surveillance tools and climate change now provides

greater impetus for their use [2]. This is especially the case

in the marine environment where the incidence of disease

has been on the rise [3–5] and some diseases, like those of

corals, are expected to increase with warming [1]. Further,

many marine host–pathogen systems are temperature sensi-

tive [3,5,6], and sea temperature can easily be monitored

and modelled [7–10].

In the ocean, temperature-based disease surveillance tools

have been developed for tropical corals to monitor and forecast

coral bleaching [7,11–13]. Thermal coral bleaching is a physio-

logical, non-infectious disease, caused by breakdown and

ejection of the algal symbionts when high temperatures

persist [14]. The US-based NOAA Coral Reef Watch (CRW)

programme maintains a website that hosts near real-time

monitoring tools, seasonal outlooks and long-term projections

of bleaching conditions under climate change ([7]; coralreef-

watch.noaa.gov). These tools inform resource managers of

bleaching events and monitor the scale and severity of the

events [7,15]. In addition, links between measures of thermal

stress and the group of infectious diseases called ‘white

syndromes’ (WS) in corals have been used to develop near

real-time monitoring tools and seasonal outlooks of disease-

conducive conditions [1,16,17]. These tools have been adopted

to form an early warning system for the Australian Great

Barrier Reef Marine Park Authority’s Coral Disease Response

Plan, one of the few formal marine disease response plans

for diseases linked directly to temperature [18]. Long-term

projections have also been developed for identifying climate

conditions that increase coral disease susceptibility and

pathogen abundance and virulence [1].

The bleaching and WS examples from ecosystems like coral

reefs that are already impacted by rising temperatures demon-

strate that temperature-based disease surveillance tools can

inform research, monitoring and management. Such tools

have four primary applications: (i) target efforts to use rapidly

advancing diagnostic tools to confirm disease presence or

assess prevalence; (ii) target research and monitoring that

builds understanding of the role of environmental conditions

in disease aetiology; (iii) target management actions that miti-

gate disease or downstream impacts (e.g. closing areas to

human activity); and (iv) raise awareness of disease risk either

to educate stakeholders or build political or social will and accep-

tance of planned research, monitoring and management actions

[18]. There are other environmental factors that can influence

the likelihood of marine disease outbreaks (e.g. pollution,

eutrophication or salinity), independently or synergistically

with temperature [19,20]. However, temperature-based pro-

ducts are a logical starting point and launching pad for

development of surveillance tools for marine diseases based

on monitoring and projecting environmental conditions.

Among the host–pathogen–environment relationships, there

are many cases in which the role of temperature has been most

clearly elucidated. There are also established data archives for

sea temperature and weather and climate models that can be

used to develop seasonal outlooks and projections.
Our objective is to describe how the scientific and

management communities can develop temperature-based

surveillance tools for marine diseases. We first describe the

process by which these tools are developed, explaining the

interplay between research into temperature–disease relation-

ships and the process of developing and refining surveillance

tools. We then present a case study showing our process and

initial development of surveillance tools for epizootic shell

disease (ESD) in the American lobster, Homarus americanus.
2. Developing temperature-based disease
surveillance tools

Disease surveillance tools require research and ‘product’

development (figure 1). The research component consists of

understanding disease–temperature relationships and under-

pins product development. After the tools are deployed

(figure 1), research and product development are ongoing

and result in improved versions of the surveillance tools

with greater predictive ability.

(a) Research
The research component for surveillance tools includes identify-

ing candidate diseases and then describing disease links with

temperature and assessing disease predictability (figure 1).

(i) Identifying candidate diseases
We identified 24 host–pathogen systems that could be candi-

dates for the development of temperature-based surveillance

tools using the paper authors as an expert focus group

(table 1 and electronic supplementary material, table S1).

Here, candidate host–pathogen systems had to meet the fol-

lowing criteria: (i) the host–pathogen system is well known,

and temperature is a primary factor associated with outbreaks;

(ii) outbreaks of the pathogen have severe impacts (at any

spatial scale) on host populations, with ecological, economic

or social/cultural consequences of concern to resource man-

agers or the scientific community; and (iii) temperature-

based surveillance tools for the disease could help resource

managers mitigate disease or downstream impacts or could

otherwise benefit scientists, stakeholders or community mem-

bers. The list of 24 candidate host–pathogen systems was then

split into nine that are good candidates (table 1) and 15 that are

potential candidates. Experimental and field-based evidence

for host–pathogen systems considered good candidates

suggests that initial versions of surveillance tools could be pro-

duced with limited further research. Potential candidates

could be good candidates depending on the outcomes of

further research, including understanding synergism of other

stressors with temperature (electronic supplementary material,

table S1). This expert-based classification was based on the

strength of evidence linking temperature to disease causation,

progression or spread.

The nine host–pathogen systems considered good candi-

dates include: Vibrio spp. [32,33], MSX [30,31] and Perkinsus
marinus [26–29] in the oyster Crassostrea virginica; a microbial

consortium causing black band disease (BBD) in stony

tropical corals [23,24]; Labyrinthula zosterae causing eelgrass

wasting disease in the temperate eelgrass Zostera marina
[42–44]; and the suite of bacteria causing ESD in the

American lobster, Homarus americanus [37,38,45,46] (see

http://rstb.royalsocietypublishing.org/
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Figure 1. Process for development of temperature-based disease surveillance tools. The three-part research process concludes with assessing disease predictability
and then either proceeding with product development and deployment or continuing to undertake research. Product deployment is not an endpoint as tools are
iteratively evaluated and continually improved through research and end-user consultation.

Table 1. Host – pathogen systems identified as good candidates (viable now) for developing temperature-based surveillance tools, based on expert opinion. For
these systems, disease and downstream impacts are amenable to management actions and the role of temperature in the disease aetiology is well established.
This list shows the breadth of host – pathogen systems that are good candidates for surveillance tools but is not expected to be exhaustive. See electronic
supplementary material, table S1 for an overview of potential candidates; these could be good candidates for developing temperature-based surveillance tools
depending on the outcomes of future research.

hosts species
causative agent or disease
name region references

sponges

sponges comm. dictyoceratids, Ircinia spp.,

Sarcotragus spp.

microbial consortium Mediterranean sea [21]

corals

corals several species white syndromes and black

band disease

global [1,16,17,22 – 24]

corals Paramuricea clavata microbial consortium Mediterranean sea [25]

molluscs

oyster Crassostrea virginica Perkinsus marinus Mid-Atlantic USA [26 – 29]

Crassostrea virginica MSX - Haplosporidium nelsoni Mid-Atlantic USA [30,31]

Crassostrea virginica Vibrio spp. human pathogen [32,33]

Pacific oyster Crassostrea gigas Vibrio splendidus Western Europe [34,35]

abalone Haliotis rubra Perkinsus olseni Australia [36]

crustaceans

lobster Homarus americanus epizootic shell disease NE N America [37,38]

vertebrates

salmon salmonids salmon louse Canada, US, N Europe, Chile

(farmed salmon only)

[39 – 41]

plants

eelgrass Zostera spp. Labyrinthula spp., L. zosterae N America, Europe [42 – 44]
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Figure 2. Examples from coral reefs relating bleaching observations and the diseases known as ‘white syndromes’ to thermal stress metrics. The metrics here are degree
heating days (DHDs) and the mean positive summer anomaly (‘heating rate’ on left), both of which represent stress accumulation above a baseline (average of maximum
warm season temperatures). Elucidating these host – disease temperature relationships is the foundation upon which temperature-based disease surveillance tools are
built ((a) is an adapted version of fig. 3 in [25] and (b) is reproduced here with permission from Coral Reefs [17]).
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table 1 for a full list). The 15 host–pathogen systems classified

as potential candidates include: Hematodinium perezi in the

blue crab Callinectes sapidus [47–49]; IHNV in Canadian

salmon [50]; and wasting disease in several species of sea

stars [51] (electronic supplementary material, table S1). The

lists of good and potential candidates show the breadth of

host–pathogen systems for which temperature-based disease

surveillance tools could be developed.
(ii) Describing disease links with temperature and assessing
disease predictability

Temperature can alter host–pathogen interactions in many

ways, and understanding the relationship between tempera-

ture and disease risk (emergence or disease severity) is the

foundation upon which temperature-based surveillance

tools are built. Researchers can gain this knowledge through

laboratory experiments with different temperature treat-

ments that start with both diseased and asymptomatic

individuals. Field surveys can also be used to relate in situ
observations of spatio-temporal disease patterns with

in situ, remotely sensed or modelled temperature data. For

laboratory experiments and field surveys, the goal is to

gather data that can be used in statistical models to under-

stand the shape of the relationship between temperature

and disease risk (examples, figure 2). This will be driven

by the shape of the temperature–performance curve for

the host–pathogen system. Biological rates typically show

unimodal responses to temperature, a generality supported

by two recent meta-analyses [52,53]. Metabolic reaction

rates tend to increase exponentially up to an optimal temp-

erature, beyond which responses often decline more rapidly

than they rise, meaning these relationships are often left

skewed (review in [54]). As an example, the unimodal

relationship between temperature and malaria transmission

is shown within Mordecai et al. [54].

Quantifying temperature–performance curves for

marine diseases is notoriously difficult in the field. Avail-

able temperature measurements may not be representative

of the ‘microniches’ occupied by species of interest. Species

may be regulating their exposure to temperatures (e.g. by

inducing ‘behavioural fevers’ or staying in shady spots),
or the timeframe over which temperature conditions need

to be characterized may be unknown. Further challenging

this endeavour are lag effects, cumulative effects or effects

of temperature ‘hot or cold snaps’ not captured by the tem-

poral resolution of available temperature data. Finally,

temperature often covaries with other factors that change

seasonally, such as salinity or community composition;

these may need to be accounted for in a model before a

temperature effect can be detected. For all of these reasons,

statistical model fitting, informed by knowledge of the

biology of the system, is often the best approach to deter-

mining whether and which temperature conditions can be

used to forecast disease risk.

In undertaking model fitting for linear or nonlinear models,

a range of variables that describe temperature conditions can be

examined based on: (i) absolute temperatures; (ii) temperature

anomalies relative to a regional baseline; (iii) the accumulation

of temperature stress above a threshold representing the

regional climatological average or average maximum tempera-

tures (usually over a 10þ year timeframe); or (iv) temperature

variability. Each of these four types of predictor variables can

be quantified over a range of timescales and can include con-

sideration of lag effects (i.e. by shifting the time period for

which the temperature condition is quantified relative to disease

emergence or manifestation of the disease severity level of

concern). In all, dozens of candidate predictor variables

may be considered when fitting models. There is no general

hierarchy in the ability of the four types of temperature varia-

bles to predict disease; the merit of each will vary among

host–pathogen systems. Example response variables include

prevalence, transmission rate, progression rate and severity.

The selected response variable (described from here as simply

‘disease risk’) is then predicted using the predictor variable(s)

that have links to plausible mechanisms, and that contribute

to the top performing models; i.e. they best explain variance

in the onset, progression or disease transmission documented

in the laboratory or from field observations.

The relationships between temperature and non-infectious

coral bleaching are assumed to be linear. The widely applied

thermal stress metric for coral bleaching, the ‘degree heating

week (DHW) or day’, mathematically represents the accumu-

lation of temperatures above typical summer maxima [55].

http://rstb.royalsocietypublishing.org/
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The DHW metric outperforms excedance of, for example, any

absolute temperature when predicting spatial patterns in

bleaching response severity (e.g. per cent of corals affected or

average per cent of colony bleached) [56,57]. DHW predicts

the bleaching response, because high temperatures have to per-

sist for bleaching (i.e. the loss of algal symbionts) to be severe

enough for paling of the corals to be visible. The DHW metric

can predict the stress response despite not accounting for cool

days and capturing what these reprieves from temperature

stress may mean for bleaching risk. Knowing a/the tempera-

ture–disease mechanism gives researchers more confidence

as to which predictor variables to examine or prioritize in

model frameworks and more confidence in the results. How-

ever, in many cases, temperature–disease mechanisms will be

unknown or poorly understood. In these cases, the model-

fitting exercises undertaken will be largely exploratory;

correlations found can still be used to develop surveillance

tools though confidence may be lower in these until research

advances understanding of temperature–disease mechanisms.

The final research step in developing surveillance tools is

model validation. To validate a model, one tests how well

hindcasts of disease risk based on statistical models predict

instances in which the disease occurred or did not occur.

The key here is to consider the degree of predictability in

the context of the anticipated purpose(s) of the tool. For

example, higher degrees of predictability might be required

to warrant making management decisions that limit or

shape human activities (e.g. close a fishery) than to inform

citizen science programmes aimed at increasing understand-

ing of disease via outreach. After assessing predictive ability,

a decision is made as to whether to continue to undertake

research into the temperature–disease relationship or to pro-

ceed with developing surveillance tools (see step 3, figure 1).

In many cases, developing first draft (or ‘beta’) versions of

surveillance tools will be warranted solely to target research

and monitoring efforts that can increase understanding of

disease aetiology.
(b) Product development and deployment
The development of temperature-based surveillance tools is a

cycle of determining the product timescale(s), testing, deploy-

ing and then iteratively evaluating the temperature–disease

relationship, uncertainty and forecast presentation and utility

(see process description in figure 1). Temperature-based

surveillance tools can assess disease-conducive conditions

on various timescales: in near real-time, as seasonal outlooks

with one to 12 month (typically less than or equal to six

months) lead times, and as long-term projections that

typically range from 1 to 85 years (i.e. pre-2100). Each pro-

duct type or timescale has a different benefit or purpose

with respect to how research, monitoring and management

decisions can be informed.

(1) Near real-time monitoring involves compilation of very

recent remotely sensed, in situ or modelled sea surface

temperature data (from recent days or weeks). Near

real-time monitoring tools inform rapid responses by

helping make reactive decisions on scales of days to

weeks to target research, monitoring or management

[18,58]. For example, near real-time monitoring of temp-

eratures that promote the group of coral diseases ‘WS’

can be used to target research and monitoring that can
increase understanding of WS transmission and the role

of coral colony density.

(2) Seasonal outlooks use seasonal climate models that take

account of recent conditions and produce forecasts of

how sea temperatures may change in the coming months.

Outlooks can inform reactive decisions as well as near-

term planning. A new management action may be

implemented or an existing action changed to prepare for

a disease outbreak event predicted to occur. For example,

coral reef areas can be closed to limit human activities

(e.g. diving and fishing) that would further stress organ-

isms affected by diseases such as BBD or that could cause

disease to spread among areas [59,60]. Outlooks can be pre-

sented within communications products that explain

disease risk conditions to senior decision-makers or the

public. Such communication based on outlook results can

mobilize resources or generate the political or social will

required to respond to events when they occur.

(3) Long-term projections are developed using climate

models driven by emissions scenarios established by the

Intergovernmental Panel on Climate Change. Output

units are typically in years, with the projected timing of

onset of a set frequency (e.g. 2�, 3�, 5� per decade or

annual) of disease-conducive conditions. For example,

projections have been produced showing the great

majority of the world’s coral reefs are at risk for coral

disease outbreaks before 2050 based on current anthropo-

genic stress and sea temperature projections [1]. As with

the seasonal outlooks, projections can raise awareness

among the scientific and management community [8,9],

inform planning or build political and social will for

future management actions [9,10].

All three types of surveillance tools will produce disease risk

forecasts that, as with all forecasts and predictions, inherently

have uncertainty. Uncertainty stemming from the strength of

the temperature–disease association can be formally

acknowledged when sharing tools or tools can be shared

with a limited group until research advances. Sometimes,

there will be spatial or temporal variation in uncertainty in

forecasts that can be qualified or quantified, for example

owing to spatial variability in the amounts, types or quality

of the information used to generate the forecast. In these

cases, Bayesian modelling can be used to produce disease

risk forecasts, and a likelihood curve can be presented along-

side the prediction, increasing the transparency of resultant

research, monitoring or management decisions. Further,

local adaptation of the host or parasite, variation in commu-

nity compositions and host and parasite behaviour and

density are all potential drivers of spatial variation in temp-

erature–disease relationships and will change through time.

Spatial variation in temperature–disease relationships can

be built into surveillance tools using site or region-specific

algorithms to forecast disease-promoting conditions, as is

possible for coral bleaching [57]. Forecasts of disease risk

should not be produced outside the range of the fitted

relationship between temperature and disease or for areas

where temperature–disease relationships are unknown or

poorly understood. Because the temperature–disease

relationship will change through time, the statistical models

that underpin surveillance tools have to be re-visited regu-

larly as new observations become available, followed by

further model validation.

http://rstb.royalsocietypublishing.org/
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Figure 3. Examples of the American lobster, H. americanus, affected by epizootic
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so have less than 10% the value of a healthy animal.
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3. Case study: epizootic shell disease in the
American lobster

We have undertaken the development process for ESD in the

American lobster (figure 3) and have produced initial (‘beta’)

versions of all three types of temperature-based surveillance

tools. ESD was selected from among the ‘good’ candidate

host–pathogen systems because the American lobster is an

iconic species with high ecological as well as economic and

social/cultural value. Further, fisheries managers confirmed

surveillance tools would be of value to a management

community gravely concerned about current ESD prevalence

levels and potential increases in prevalence or expansion into

new areas under climate change.

(a) Background and aetiology
The American lobster is an iconic species in the coastal New

England states (USA) and the Canadian Maritime Provinces.

It supports large fisheries with annual landings approaching

US$ 1 billion split between Canada and the USA [61,62]. The

lobster population off southern New England (SNE) is under

severe stress from a combination of increasing ocean tempera-

tures and commercial exploitation [63–65]. The temperature

stress in SNE has been linked to an unusual syndrome

known as ESD, characterized by the rapid degradation of

the ‘shell’ or cuticle [37,66,67]. The disease appeared in east-

ern Long Island Sound (LIS), Block Island Sound and

Buzzards Bay in the late 1990s (see figure 4b for locations),

and quickly rose in prevalence to around 25–35%, with

prevalence levels double that in ovigerous females [68].

There is concern that the disease may be spreading into the

highly productive fishery in the Gulf of Maine. Currently,

prevalence levels are less than 2% (maximum seen) through-

out the shallow coastal waters around the Gulf of Maine and

are typically much less than 0.5%.

ESD is an environmental disease involving increased

temperature, widespread levels of contaminants and a dys-

biosis of the bacterial flora on the cuticle. Chitinoclastic

bacteria, notably Aquimarina homari, as well as other bacterial

species, colonize the cuticle and burrow into it causing exten-

sive necrosis to the surrounding cuticular tissues [45,46]. Our

current understanding of ESD aetiology is that increased

temperature and contaminants negatively affect host defen-

sive responses, weakening the cuticle and making it more

susceptible to the dysbiotic bacterial community [69–73].

ESD is correlated with temperature, and begins to emerge

in lobsters when mean annual bottom temperatures rise

above 8–108C or with maximum monthly mean (MMM)

bottom temperatures of greater than or equal to 128C. The

disease is prevalent when MMM bottom temperatures

approach 208C [37]. One laboratory study has examined the

effect of temperature and bacterial challenges in lobsters [74].

The characteristic lesions of ESD developed at 108C, but

took longer to develop at that temperature and showed less

severe histopathology than lesions in animals held at 15

and 208C [74]. Lobsters are able to shed the infected carapace

during moulting, but the new carapace can rapidly become

re-infected [75,76]. Importantly, this complicated aetiology

has not been fully elucidated, but temperature is a strong

component [38].

The direct effect of ESD is that infected lobsters are not

marketable in the lucrative live trade owing to extensive
necrosis of the carapace and claws (figure 3). Instead, their

meat is processed in the canned meat trade, which does not

provide sufficient income to cover a fisher’s operating costs.
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More importantly, mortality from ESD is linked to intermoult

duration [77], and ESD is more prevalent in ovigerous

females that moult less frequently [38]. Once females reach

sexual maturity their growth rate slows (measured as an

increase in intermoult duration) [78]. Moreover, ovigerous

females moult less frequently while they bear eggs, and

thus suffer increased mortality from the disease because

they cannot moult out of it and often die [38]. The resulting

loss in egg production limits juvenile recruitment [79].

Declines in the New England lobster stock have been

caused by a suite of stressors (temperature, overfishing,

ESD) and have been so drastic that management agencies

proposed a moratorium to the fishery off SNE in 2010 [64].

The moratorium was not imposed, and the fishery has

since collapsed in the near shore areas. From the disease

perspective, there are now two concerns, posed here as ques-

tions. First, will the disease continue unabated in SNE,
effectively conspiring with other stressors to keep the stock

at low population levels? Second, will waters warming

under climate change in the northern Gulf of Maine and

Nova Scotia cause the disease to increase in prevalence

there, affecting the viability of those lobster fishing indus-

tries? We use long-term climate model projections to shed

light on the answers to these questions. We also develop

beta versions of near real-time monitoring and seasonal out-

look tools enabling researchers and managers to assess and

monitor ESD-conducive conditions. There is a lag time

between temperatures and increased prevalence of ESD, so

the near real-time monitoring and seasonal outlooks can

serve as an early warning system. If the surveillance tools

http://rstb.royalsocietypublishing.org/
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indicate ESD-conducive conditions are present, scientists and

managers can increase efforts to monitor ESD. These

increased and targeted monitoring efforts can increase under-

standing of the temperature–disease relationship, which is

our goal in developing these initial versions of temperature-

based surveillance tools for ESD. For instance, in fisheries

models, background mortality and the value of the landed

catch are critical inputs for determining catch limits and clo-

sures. Being able to predict these under conditions that

increase ESD could, therefore, lead to more effective lobster

management.
Phil.Trans.R.Soc.B
371:20150208
(b) Developing surveillance tools for epizootic shell
disease-conducive sea temperatures

(i) Product development methods
We generated a model that compares surface temperatures to

the temperatures on the ocean bottom where lobsters reside

in a study area inclusive of LIS (southwest corner) and

southern Nova Scotia (northeast corner; map extent is

40–458 N, 64–758 W). We used 4-km remotely sensed SST

data from the NOAA PATHFINDER v5.2 dataset (the US

NOAA official climate data record for SST [80]) in combination

with the World Oceans Atlas (WOA) [81], which has tempera-

tures at various depths (0.258 resolution). To model bottom

temperatures, we calculated a linear regression between

monthly mean climatology surface and bottom temperatures

in the WOA. We then used these relationships to model

bottom temperatures from the observed PATHFINDER surface

temperatures. Modelled bottom temperatures were not

ground-truthed to actual bottom temperatures from sensors

for these initial versions of the surveillance tools (i.e. only

the PATHFINDER to WOA data comparison was undertaken).

Modelled bottom temperatures for July–September 2012

were slightly cooler (but within 1.58C) than observed tempera-

tures in the near shore areas where most of the lobsters reside

and were within 0.58C for the offshore areas (figure 4a).

Wahle et al. [79] found that the abundance of lobster pre-

recruits (sublegal individuals) started to decline when the

prevalence of ESD exceeded 5%. The area of SNE in which

ESD prevalence has been more than 5% during at least the

last 5 years has a polygon around it in figure 4b. The

MMM climatology values for modelled bottom temperature

were calculated and the lowest MMM value that was associ-

ated with prevalence values greater than 5% was 128C. This

suggests that the absolute temperature threshold for

increased ESD prevalence is a minimum of 128C, but it is

likely to be higher as our modelled bottom temperatures

are slightly cool. Glenn & Pugh [37] found ESD to be clearly

correlated with temperature and associated with long-term

average maximum temperatures (climatology) greater than

or equal to 128C, and there is experimental evidence that

lesions develop far more quickly at 158C than at 108C [74].

The MMM values for the Gulf of Maine in the fishery report-

ing grid area are 7–118C. The required length of exposure to

temperatures greater than or equal to 128C for ESD preva-

lence to increase is unknown, and is the subject of on-going

laboratory experiments; i.e. the shape of the relationship

between temperature and ESD development is unknown.

Our use of the 128C threshold represents application of the

precautionary principle because it errs on the side of the

tools producing false-positives rather than producing false-
negatives. This reduces cost-effectiveness of the targeted

monitoring somewhat (monitoring places the disease does

not occur), but helps ensure the disease is not missed. For

the initial versions of temperature-based surveillance tools,

we assumed that modelled bottom temperatures need only

exceed 128C for a day for the near real-time monitoring

tool, a week for the seasonal outlook, and a month for the

long-term projections. These timeframes are based on the

temporal resolution of the temperature data used to develop

each product type.

Our real-time monitoring of SST in the area of interest is

based on the 5-km CRW product described in Liu et al. [7]

and is presented for 15 September 2014. The seasonal outlook

produced has a 3-month lead-time and presents the probabilis-

tic outlook for September 2015 of bottom temperatures

exceeding 128C for a minimum of seven consecutive days

based on model runs from 22–28 June 2015. To generate the sea-

sonal outlook, we calculated the SST values required for

modelled bottom temperatures of 128C (see electronic sup-

plementary material, figure S1), and then used the SST

forecast from the NOAA National Center for Environmental

Prediction’s (NCEP) Climate Forecast System Version 2

(CFSv2) (see electronic supplementary material for additional

methods for the seasonal outlook). The long-term outlooks

are statistically downscaled (4-km resolution) climate model

ensemble-based projections for the fossil-fuel aggressive emis-

sions scenario RCP8.5, following van Hooidonk et al. [10] (see

electronic supplementary material, table S2 for models list).

The projections produced are for the timing of the onset of maxi-

mum temperatures greater than or equal to 128C (i.e. annual

exceedance).
(ii) Product development results
The near real-time monitoring for 2014 suggests modelled

bottom temperatures are regularly more than 128C in SNE

and regularly approach 208C where prevalence of ESD

currently ranges from 10 to 40% (figure 5) [67,68]. Modelled

bottom temperatures in the Gulf of Maine fishery reporting

grid area were 7–118C at this time. September is the month

in which modelled bottom temperatures have historically

been highest for most of the area of interest; hence, tempera-

tures are unlikely to have been much higher in the preceding

or following month.

For SNE, the seasonal outlook for September 2015, as of

June 2015, suggests bottom temperatures in 2015 will equal

or exceed what was observed mid-September in 2014. For

the northern Gulf of Maine, if the bottom temperatures

forecasted in the seasonal outlook manifest, 2015 will be the

warmest year in the last 30 years in some of the areas

where Maine lobsters are fished. These temperatures could

lead to increased ESD prevalence in the northern Gulf of

Maine in 2016. This result demonstrates the value of seasonal

outlooks for targeting monitoring efforts. For example,

bottom temperatures will be monitored through 2016 to

ground-truth the surface–bottom relationship in the seasonal

outlook algorithm and to compare ESD prevalence in 2016

with other recent years.

The areas within the Gulf of Maine where bottom temp-

eratures are forecasted to be more than 128C for at least

seven consecutive days in 2015 are the areas where the

rates of increase in bottom temperatures from 1982 to 2008

were greatest (figure 4c). Linear trends in bottom temperature
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range in the area of interest from zero to more than 0.38C per

decade. The highest rates of increase are throughout the SNE

area where ESD prevalence is and has been greater than 5%

(last approx. 10 years) and in parts of the Gulf of Maine

and western and southern Nova Scotia. The long-term projec-

tions suggest past trends of temperature increase in these

areas will continue. Maximum temperatures are projected

to be more than 128C annually within the next 20 years

(figure 5c) in most of the Gulf of Maine fishery zones

(especially east) and in western and southern Nova Scotia.

Currently, prevalence levels of ESD are higher in the western

(approx. 2%) than in the eastern Gulf of Maine (less than

0.5%, K.R., unpublished data). The long-term projections

suggest this may change as temperatures have been

(figure 4c) and are projected to warm more rapidly in the

eastern than western portions of the Gulf (figure 5b). These

projections are conservative; the projected rates of tempera-

ture increase for the coming decades in the area of interest

are less than has been observed across the three recent

decades (electronic supplementary material, figure S2).

(iii) Future research
Results from experiments as well as additional field obser-

vations from on-going monitoring programmes in Maine

can be used to further refine the versions of the surveillance

tools presented here. The prevalence of ESD (usually less

than 0.5%) has been too low in the fishing area off Maine

(i.e. low prevalence and temperatures less than 128C) to use

existing data to determine whether temperature thresholds

for ESD are different there than for lobsters off SNE. Conse-

quently, the general belief is that bottom temperatures have

thus far been too low in the Gulf of Maine to facilitate the

emergence of ESD. As yet, very few laboratory experiments

have been conducted on the progression of ESD in relation

to temperature. The few experiments that have been con-

ducted have used lobsters caught in SNE or reared in

aquaria. The population of lobsters in the Gulf of Maine is

likely to be locally acclimated and genetically adapted;

thus, the suite of conditions facilitating ESD (temperature

included) will probably be different there than in SNE.

Future experiments could examine whether rates of pro-

gression of ESD differ between lobsters from the northern

Gulf of Maine and lobsters from SNE. Results from experiments

can then be combined with monitoring efforts at ground-truth

predictions from the surveillance tools.
4. Conclusion
As feared, recent increases in temperatures thought to have

contributed to ESD onset and rapid progression in SNE are

projected to continue unabated. Sea surface (and modelled

bottom) temperatures are projected to increase at faster

rates in SNE than anywhere else in the Gulf of Maine or

Nova Scotia. Our projections indicate that high prevalence

levels of ESD are likely to persist in SNE. Concerns related

to ESD prevalence increase and ESD expansion in the north-

ern Gulf of Maine also seem warranted but require further

research and clarification. Recent bottom temperature

increases coincide with recent increases in ESD prevalence

in parts of the Maine fishery; however, prevalence is still

less than 2% (K.R., unpublished data). Along with the results

presented here, recent increases in ESD prevalence in Maine
may continue in coming years, especially in shallow bays

where waters are warming most quickly. The experiments

we describe above can help determine whether substantial

increases in ESD prevalence are likely to accompany the

projected increases in temperature maxima.

Iterative refinement is a key feature of the development

process for surveillance tools. Product deployment, including

the sharing of initial versions of tools (as is the case here), is a

process rather than an endpoint. There are no host–disease–

temperature relationships in the marine environment for

which our understanding of the aetiology is exhaustive and

host–disease–temperature relationships may change over

time. Further, there are various other environmental par-

ameters (e.g. salinity, water quality) that may influence the

incidence of marine disease; where appropriate, these

should be incorporated into more sophisticated tools that

consider multiple environmental stressors simultaneously.

Temperature-based disease surveillance tools are needed,

because outbreaks of diseases known to increase with warm-

ing are likely to increase in frequency and severity as waters

warm under climate change. Meeting the increasing need for

these tools is possible if the appropriate research data,

resources and assessment tools can be brought together.

New legislative frameworks could provide resources for

developing forecasting tools to the extent required to

manage marine disease outbreaks [80]. For example, success-

ful passing of the Marine Disease Emergency (MDE) Act

in the USA, under consideration as of December 2015,

would ensure marine disease outbreaks are considered for

classification as ‘emergencies’ [82,83]. The MDE Act would

also establish central data repositories that will aid in devel-

oping more surveillance tools by increasing the accessibility

of data on disease observations. That an MDE Act is being

considered is indicative of the inertia behind the idea that

marine disease outbreaks warrant well-resourced responses.

The temperature-based disease surveillance tools we describe

here can inform these strategic responses, increasing our ability

to adaptively manage disease and downstream impacts.
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