Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex

Michael E. Hasselmo

Center for Memory and Brain, Department of Psychology and Graduate Program for Neuroscience, Boston University, 2 Cummington St., Boston, MA 02215, USA

Data show a relationship of cellular resonance and network oscillations in the entorhinal cortex to the spatial periodicity of grid cells. This paper presents a model that simulates the resonance and rebound spiking properties of entorhinal neurons to generate spatial periodicity dependent upon phasic input from medial septum. The model shows that a difference in spatial periodicity can result from a difference in neuronal resonance frequency that replicates data from several experiments. The model also demonstrates a functional role for the phenomenon of theta cycle skipping in the medial entorhinal cortex.

1. Introduction

Experimental data show correlations of grid cell firing with intrinsic resonance properties of medial entorhinal neurons, but previous models have not directly addressed resonance. A model presented here attempts to link resonance properties to grid cell firing by using network dynamics dependent upon timing of rebound depolarization causing rebound spiking activity. In the model, the phase of rebound spiking relative to the phase of rhythmic input from medial septum determines which neurons next become active, resembling the oscillatory interference model of grid cells. Transitions between active neurons can be regulated by changes in inhibition input magnitude or medial septum frequency associated with running velocity, resulting in spatially periodic firing similar to grid cells. When inhibition is used to generate rebound spiking, maintenance of network activity can use alternating cycles of input activity that resemble data on theta cycle skipping by neurons in medial entorhinal cortex and medial septum. Loss of medial septal input causes loss of spatially periodic firing. The model requires updating the phase of input from medial septum similar to the ring attractor model of grid cells. The model potentially links differences in intrinsic resonance properties to changes in grid cell firing properties in different anatomical recording locations.

Grid cells generate spikes as an animal visits an array of locations in the environment that fall on the vertices of equilateral triangles tessellating the environment [1,2]. A number of models address the mechanism of grid cell firing, and different models successfully account for different aspects of the spatial firing properties. Oscillatory interference models [3–7] address the theta rhythmic firing of grid cells [8–12], the theta phase precession of grid cells [8,13] and the prominent theta in the local field potential of entorhinal cortex [14–17]. Attractor models [18–21] address the shared orientation and spacing of grid cell firing fields [22] and the quantal spacing of grid cell firing fields [12,23]. Self-organization models [24–26] can account for the loss of grid cell firing with inactivation of the hippocampus [27]. Researchers often contrast models using oscillatory interference with those using attractor dynamics or self-organization, but many features of these models are compatible and could coexist within a single network model of grid cells.

However, the simplified structure of most existing models does not address the full range of physiological data. In particular, most models do not incorporate...
intrinsic properties of neurons. The model presented in this article builds on previous models of grid cells, including the oscillatory interference model [3–5] and ring attractor model [6,28], but with a specific focus on addressing physiological data on intrinsic rebound spiking and theta cycle skipping not addressed by previous models. In particular, the model is motivated by the desire to address the correlation between grid cell properties and the presence and frequency of resonance in medial entorhinal neurons [29–37] and the potential functional role of rebound spiking of stellate cells owing to the hyperpolarization-activated cation current (h current) [37–39]. The model was also motivated by the phenomenon of theta cycle skipping observed in the spiking of neurons in the medial entorhinal cortex [17,40,41] and in the medial septum [42,43] and the loss of grid cell firing with inactivation of the medial septum [10,11].

2. Intracellular data on resonance

Physiological data using both intracellular and extracellular recording techniques provided the primary motivation for this new model. In particular, existing models do not satisfactorily link the firing of grid cells to the data on intracellular resonance [29–37] and rebound spiking [37–39] in layer II stellate cells as in the examples shown in figure 1a. The model has been developed in an attempt to address the frequently replicated data showing a difference in resonance frequency along the dorsal to ventral axis [31–34,37] that correlates with the size and spacing between grid cell firing fields [12,22,44]. The link with grid cell firing is supported by the appearance of resonance in layer II stellate cells in medial entorhinal cortex [29,35–37] but not in layer II neurons in lateral entorhinal cortex, correlating with the unit recording data showing grid cells in medial but not lateral entorhinal cortex [45]. In addition, the model was motivated by data showing modulatory reductions in cellular resonance frequency by acetylcholine [46] and data on acetylcholine release in novel environments [47] that could underlie the difference in spacing observed in novel environments [48,49].

Simulations in the model also suggest how grid cell properties could still be generated by cells with very low resonance frequencies (1–2 Hz). This is relevant to data showing that knockout of the HCN1 subunit of the h current that results in only very low frequency resonance in stellate cells [50] does not prevent the appearance of grid cell firing fields, but does expand the size and spacing of these firing fields [51]. Modelling with these low resonance frequencies also suggests how the low resonance frequency observed in slice preparations of entorhinal cortex in bats [52] could still underlie the generation of grid cells in the entorhinal cortex of crawling bats [53].

3. Extracellular data on theta cycle skipping and loss of theta rhythm

Many features of extracellular spiking activity have been successfully addressed by existing models, but some aspects of extracellular spiking data remain to be addressed. Attractor models have many strengths in effectively simulating population features of grid cells [18–21,54], including the shared spacing and orientation of nearby grid cells [8] and the quantal nature of these grid cell properties [12,23]. However, most attractor models do not yet address the theta rhythmic firing of grid cells that results in intervals between spikes that are often over 100 ms. Some existing grid cell models that simulate theta rhythmic spiking of neurons have used slow time
constants of synaptic potentials [55,56]. As an alternative to slow synaptic interactions, one attractor model overcame the problem of simulating long interspike intervals by using an alternative solution involving rebound spiking dependent on prior spikes [56]. That also allowed simulation of theta phase precession [56]. The model presented here also uses rebound spiking, but the rebound in this new model arises from subthreshold dynamics rather than previous spikes, allowing simulation of subthreshold resonance properties and of rebound spiking after hyperpolarization.

Oscillatory interference models simulate the firing field periodicity and theta phase precession [5] observed in data on grid cells [8,13], but do not yet use the phenomenon of theta cycle skipping observed in many medial entorhinal neurons [17,40,41] and in the medial septum [42,43]. Using mechanisms of rebound spiking, the model presented here will address both the functional role of theta cycle skipping as well as the long interspike intervals in theta rhythmic spiking. The model also indicates why grid cell spatial periodicity would be lost with inactivation of the medial septum [10,11].

4. Model using resonance and rebound spiking in medial entorhinal cortex

This model uses the physiological properties of resonance and rebound spiking in layer II stellate cells to reactivate population activity on each theta cycle. Stellate cells in medial entorhinal cortex are only present in layer II and contain a hyperpolarization-activated cation current (h current) that underlies resonance at theta frequency [29,31,46,50] and causes a depolarizing rebound spiking follows a hyperpolarizing current injection [37–39]. These effects are weak or absent in pyramidal cells in deeper layers [35,57].

The resonance of single neurons can be represented with coupled differential equations as shown in equations (4.1) and (4.2), where \(v \) represents the membrane potential of the stellate cell and \(h \) represents the \(h \) current. The variable \(v \) responds to current input \(I_{\text{dep}} \) decreases with the passive decay \(g_p \) proportional to \(v \) and increases with the magnitude of depolarization \(g_h \) owing to the \(h \) current. The variable \(h \) decreases in proportion to positive values of membrane potential \(v \) and with passive decay proportion to the parameter \(\alpha_h \) multiplied by the current magnitude \(h \). The variable \(h \) increases when the membrane potential \(v \) is negative (i.e. hyperpolarized) and the value of \(-v \) is positive.

\[
\frac{dv}{dt} = -g_p v + g_h h + I_{\text{dep}} \tag{4.1}
\]

and

\[
\frac{dh}{dt} = -v - \alpha_h h. \tag{4.2}
\]

As shown in figure 1c,d, this allows simulation of subthreshold resonance properties of neurons as well as the rebound depolarization following hyperpolarization. These figures show how different resonance frequencies of neurons including high (10 Hz) and low (1.4 Hz) can be simulated by altering the parameters. This allows testing of the relationship between resonance frequency and network dynamics in the model. Other models have also previously simulated stellate cell resonance [30,58,59].

Figure 2 shows the connectivity of one version of the model and these details are briefly described here. In the model, the populations of stellate cells \(s \) interact with populations of interneurons \(i \), allowing the intrinsic dynamics of stellate cells to interact with the dynamics of network feedback inhibition, as described in these equations:

\[
\frac{dv_s}{dt} = -g_p v_s + g_h h_s - W_{si} H[v_i - \eta_i] + I_{\text{ins}}. \tag{4.3}
\]

\[
\frac{dh_s}{dt} = -v_s - \alpha_h h_s \quad \text{and} \quad \tag{4.4}
\]

\[
v_i = \sum W_{si} H[v_i - \eta_i] + I_{\text{ex}} + I_{\text{in}}(\theta(t) - \theta_{\text{pref}}). \tag{4.5}
\]

where \(v_s \) represents membrane potential of each stellate cell with index \(s \) and \(h_s \) represents the activation of the \(h \) current in each stellate cell. \(H(\cdot) \) computes output using a Heaviside or step function (0 for \(v_s < \eta_i \), 1 for \(v_s > \eta_i \) where \(\eta_i \) is the stellate cell threshold). The variable \(v_i \) represents the membrane potentials of interneurons, which also generates output through a Heaviside function with threshold \(\eta_i \). In some versions of the model (figures 2 and 3), the matrix \(W_{si} \) is an identity matrix, with each interneuron contacting one stellate cell and the matrix \(W_{si} \) provides connectivity from each stellate cell in a population to all interneurons within a single ‘line’ coding locations along the direction coded by head direction input. In another model version in figure 4, a stellate cell population (e.g. T1) sends output to a single interneuron that connects to an entire stellate cell population (e.g. T2) and vice versa. Each interneuron also receives depolarizing current input \(I_{\text{in}} \) coding current head direction \(\theta \) relative to the preferred direction of that line \(\theta_{\text{pref}} \). This is meant to represent the role of conjunctive grid-by-head-direction cells in gating the interaction of grid cells with interneurons. For simplicity of simulations, the intervening excitatory cells are left out of the simulations and the selective activation of interneurons is obtained with selective head direction input.

In the version with identity matrix input from multiple interneurons, each interneuron also receives oscillatory input from the medial septum with different phases according to the equation: \(I_{\text{ins}} = \mu \sin(2\pi f t + 2\pi n/\nu) \), where \(f \) is the medial septal frequency, \(\nu \) is the interneuron index and \(n \) is the total number of interneurons along one ‘line’ of the model. In the spiking versions of the model described below, the stellate cells also received an input \(I_{\text{ins}} \) that had the same equation as the medial septal input to the interneurons but was shifted by phase \(3\pi/2 \) and had a different magnitude \(\mu \). The initial activity in each simulation was activated by giving an initial hyperpolarizing input to the stellate cells, causing a depolarizing rebound that crossed threshold in the continuous firing rate version and generated a rebound spike in the spiking model described below.

The network dynamics depend on the resonant frequency determined by the parameters \(g_p, g_h, \alpha_h \) of the above equations and the relationship of this resonant frequency to the frequency \(f \) of the medial septal input. When the resonant frequency was significantly different from the medial septal input, this caused a shift in activity between different neurons in the population as shown in figures 2–4. In figures 2–4, the different populations of stellate cells and interneurons active on different theta cycles are designated with the letters S (stellate) or I (interneuron) with different subscripts T1 and T2 (for theta cycle 1 and theta cycle 2). Individual cells are also given cell numbers within these populations. For example, \(S_{14} \) is the fourth stellate cell in the population responding on theta cycle T1. The populations \(S_{T1} \) and \(S_{T2} \) differ only in connectivity and do not differ in intrinsic
properties. The interneuron populations IT1 and IT2 also differ only in connectivity and not in intrinsic properties.

As shown in figures 3 and 4, the resonance can alternatively be represented with a previously developed spiking model of medial entorhinal cortex stellate cell properties developed by Izhikevich [60] based on experimental data from Brian Burton in John White’s laboratory. This model uses the following equations:

\[
\begin{align*}
C \dot{v} &= k(v - v_r)(v - v_l) - u + 1, \\
\dot{u} &= a[b(v - v_r) - u]
\end{align*}
\]

\(v \geq v_{\text{peak}}, \quad v \leftarrow c, \quad u \leftarrow u + d.
\]

For stellate cells, the parameters were: \(C = 200, \quad v_r = -60, \quad v_l = -45, \quad v_{\text{peak}} = 30, \quad k = 0.75, \quad a = 0.01, \quad b = 15, \quad c = -50\) and \(d = 100\). A difference in resonance frequency and rebound spiking was obtained by changing the parameter \(a\) from \(a = 0.01\) to \(a = 0.015\). These spiking stellate neurons interacted with the same abstract interneurons described above, but in the spiking model in figures 2c and 3 the medial septal input was structured as square wave inputs that did not overlap in the depolarized phase, so only one interneuron at a time was sufficiently depolarized to be able to respond to the synaptic input from the spiking stellate cells. Different directions of movement were represented by different sets of interneurons receiving tonic depolarizing input \(I_{\text{hd}}\) representing head direction input so that the stellate cells would interact only with interneurons receiving phasic input appropriate for the current heading direction. The phase of other interneurons would be updated.
consistently so that at a turning location, the stellate activity could transition to interacting with an interneuron with the correct connectivity and phase to allow movement in the opposite direction. Thus, the update of position owing to rebound spiking needs to interact with phase reset of cells responding to other directions, consistent with previous oscillatory interference models [5] and ring attractor models [6,28,61]. In figure 4, a single interneuron received output from a full stellate cell population (e.g. T1) and provided inhibitory input to the opposite population (e.g. T2), and another single interneuron performed the opposite operation (from T2 to T1).

5. Periodicity with both high and low resonance frequencies

The model demonstrates that spatial periodicity could be generated by neurons with a range of different resonance frequencies. Figure 2a shows the circuit connectivity in which stellate cells with rebound depolarization interact with interneurons that get rhythmic medial septal input. Figure 2b shows the model from equations (4.1)–(4.5) using simulated stellate cells with parameters that match a typical stellate cell in rat dorsal medial entorhinal cortex [31,37] as shown in figure 1c(i)(ii). Figure 2b demonstrates the capacity of this circuit to maintain activity owing to the fact that stellate cells show rebound depolarization following hyperpolarizing inhibition. In this figure, the cycle time between rebound depolarizations of the stellate cells takes the same time interval as the medial septal input, so the activity stays stationary. Figure 2c shows the same effect with spiking neurons and will be described in §6.

In figure 2b, the activity starts out with an initial hyperpolarization and then shows rebound depolarization labelled as step a) that brings the stellate cell to threshold (dotted line). This causes excitatory synaptic
Figure 4. (a) Circuit design using oscillating medial septal (MS) input with different phases to two populations of stellate cells. Stellate cells interact with a single pair of interneurons that send inhibition to all stellate cells and cause rebound spiking in a subset of stellate cells. (b) Theta cycle skipping remains stationary in a subset of stellate cells ST14 and ST24 when rebound spiking matches the frequency of MS input to the stellate cells. For each cell, thick line shows membrane potential and thin line underneath shows MS input. Interneurons show strong feedback inhibition after each output spike. (c) Rebound spiking activity shifts between different stellate cells when rebound spiking is faster than the period of oscillatory MS input to the stellate cells. (d)(i)a) In a larger population, the rebound spiking occurs in a subset of stellate cells and shifts progressively across the population. The spikes of an individual stellate cell (d)(i)b) show theta phase precession relative to the medial septal frequency input (d)(i)c). The spacing of firing fields is broad (d)(i)d) when slow rebound spiking is only slightly faster than the medial septal input period. (d)(ii)a) With faster rebound spiking, the difference from the period of medial septal input oscillations is larger. The spiking of individual cells (d)(ii)b) shows faster theta phase precession (d)(ii)c) and the size and spacing of firing fields are smaller (d)(ii)d). (Online version in colour.)

output from the stellate cell to interneuron IT21 (step b). This synaptic input arrives at the peak of the oscillating input from medial septum IT11 to the same interneuron, allowing it to cross threshold (thin dashed line). Interneuron IT21 then sends synaptic inhibition (dashed line) to cause hyperpolarization in stellate cell ST21 (step c). Stellate cell ST21 subsequently shows a depolarizing rebound (step d) that brings it over threshold, causing excitatory synaptic output to interneuron IT11 (step e). This arrives at the peak of the oscillatory medial septal input allowing interneuron IT11 to cross threshold and cause inhibitory synaptic output to the first stellate cell ST11 (step f). In this manner, the self-sustaining cycle repeats itself, maintaining activity. The activity is stable in this example because the frequency of stellate cell rebound depolarization matches the medial septal input frequency.

If the timing of rebound depolarization differs from the interval determined by medial septum input frequency, then the activity can shift between different cells as shown in the electronic supplementary material, figure S1. In the example in the electronic supplementary material, figure S1, the activity shifts because the rebound spiking is faster than the frequency of input from the medial septum. Electronic supplementary material, figure S1A–C separately shows the populations of stellate cells (A), interneurons (B) and medial septal input (C). The medial septal input to each interneuron differs in phase. For example, the input to interneuron IT21 is earlier in phase (earlier peak) than the input to interneuron IT22. In addition to the medial septum input, each interneuron IT21–IT25 also receives excitatory synaptic input from every stellate cell ST21–ST25, but sends synaptic inhibition only to one stellate cell (interneuron IT21 to stellate ST21, interneuron IT22 to ST22, etc.) via an identity matrix. At time 0 in the electronic supplementary material, figure S1, a subset of cells ST21–ST24 and ST11–ST14 are oscillating strongly. However, because the rebound is slightly faster than the medial septal frequency, the rebound occurs at an earlier phase, causing activation of an interneuron receiving medial septal input with earlier phase. This causes suprathreshold activation of interneurons IT25 and IT15 which hyperpolarize stellate cells ST25 and ST15, causing a further shift in the dominant phase of stellate activity. This results in neurons IT21 and ST11 falling below threshold and becoming inactive. This pattern continues, causing a sequential progression of oscillatory activity through the network. Eventually, the activity cycles back from ST25 and ST15 to ST21 and ST11, because ST21 and ST11 are at an earlier phase relative to ST25 and ST15.

The model also addresses recent data showing lack of resonance at theta frequency in layer II neurons in bat entorhinal cortex [52]. Instead of theta frequency, these neurons show resonance frequency between 1 and 2 Hz. To address these data, electronic supplementary material, figure S1 (parts...
A,B,C) shows the circuit simulated using parameters matching the slower resonance frequency of a cell in bat medial entorhinal cortex [52], as simulated in figure 1d(i)(ii). For comparison, electronic supplementary material, figure S1 part D shows the circuit model with the parameters of theta frequency resonance from figure 2 (and figure 1c(i)(ii)) that match rat dorsal medial entorhinal cortex [31,37]. The models show the same functional ability to switch between different phases of activity, as long as the frequency of medial septal input is altered to be close to the frequency based on the intervals between rebound depolarizations. The main difference is that both the resonant frequency and medial septum frequency are faster in part D than in parts A, B and C. The same simulation could address the data showing loss of theta frequency resonance in layer II stellate cells in mice with knockout of the HCN1 subunit of the Na+ channel, as described in §4. In figure 2c, the effect with simulations of individual medial entorhinal stellate cells that generate spikes using the Izhikevich model [60] described in §4. In figure 2c, simulated activity is initiated by a hyperpolarizing input to stellate cell S_{11} (label a). This causes a rebound spike in stellate cell S_{11} that activates an associated interneuron I_{12} (label b). The interneuron I_{12} inhibits a separate stellate cell S_{21}, causing hyperpolarization (label c) that induces rebound spiking (label d) owing to resonance properties. The rebound spike in stellate cell S_{21} activates a different interneuron I_{13} (label e), causing inhibition in the first stellate cell. This initiates a rebound spike that starts the same cycle again. Note that the spikes in the stellate cells S_{11} and S_{21} fall on alternating cycles, similar to experimental data on theta cycle skipping [17,40,41] or data showing different populations active on opposite phases of theta [62]. Thus, theta cycle skipping suggests a specific mechanism for maintenance of network activity. In the figures, medial septum input was designed to use theta cycle skipping consistent with data [42,43], but in these simulations the network can effectively generate theta cycle skipping even if the medial septal input is at theta rhythm frequency.

By contrast, simulations with synchronous activation of these cells do not allow self-sustained cycle skipping (not shown). With synchronous activation, the feedback inhibition arrives during the fast afterhyperpolarization immediately after spiking and does not induce rebound spiking in other neurons. Therefore, using inhibitory rebound for self-sustained network activity appears to require the presence of theta cycle skipping in the network [17,40,41]. By contrast, excitatory interactions could occur on the same cycle, as they push the already active neuron to spike more on the same cycle, thereby enhancing depolarization and triggering stronger rebound on the next cycle. Evidence indicates that stellate cells do not have excitatory reciprocal connections [63] but it is possible that they have excitatory interactions with pyramidal cells in other layers.

The theta cycle skipping model can shift the spiking activity between different neurons, as shown in figure 3. If the timing of rebound from inhibition matches the timing of medial septal input to the interneuron of the same index (figure 3a), then the network spiking activity stably persists in a single pair of stellate cells (and interneurons), but if the timing of rebound from inhibition is faster than the time to the next theta cycle input to the interneurons, then the rebound spiking occurs in phase with the phasic input to a different interneuron, resulting in a shift in the spiking activity to different pairs of stellate cells and interneurons at a rate in proportion to the difference in timing of rebound spiking (figure 3b). In this example, a difference in running speed is represented by a change in the magnitude of inhibitory synaptic input to the stellate cells, but can also be implemented as a change in frequency of medial septal input or as a change in the intrinsic time course of rebound spiking.

6. Rebound from inhibition can underlie sustained activity with theta cycle skipping

As shown in figures 2 and 3, the use of rebound from inhibition specifically uses the property of different neurons firing on alternating cycles of theta rhythm oscillations. This provides a functional rationale for the presence of theta cycle skipping in neurons of the medial entorhinal cortex [17,40,41]. The simulations in figures 2 and 3 use the synaptic connectivity structure shown in figure 2a, demonstrating the specific connectivity network required for inhibitory rebound. To better simulate the role of theta cycle skipping [17,40,41], figure 2c shows the effect with simulations of individual medial entorhinal stellate cells that generate spikes using the Izhikevich model [60] described in §4. In figure 2c, simulated activity is initiated by a hyperpolarizing input to stellate cell S_{11} (label a). This causes a rebound spike in stellate cell S_{11} that activates an associated interneuron I_{12} (label b). The interneuron I_{12} inhibits a separate stellate cell S_{21}, causing hyperpolarization (label c) that induces rebound spiking (label d) owing to resonance properties. The rebound spike in stellate cell S_{21} activates a different interneuron I_{13} (label e), causing inhibition in the first stellate cell. This initiates a rebound spike that starts the same cycle again. Note that the spikes in the stellate cells S_{11} and S_{21} fall on alternating cycles, similar to experimental data on theta cycle skipping [17,40,41] or data showing different populations active on opposite phases of theta [62]. Thus, theta cycle skipping suggests a specific mechanism for maintenance of network activity. In the figures, medial septum input was designed to use theta cycle skipping consistent with data [42,43], but in these simulations the network can effectively generate theta cycle skipping even if the medial septal input is at theta rhythm frequency.

7. Intrinsic rebound spiking and resonance frequency influence grid field spacing

As shown in figure 3c,i, the spiking model was used to generate plots of the spatially periodic firing of a stellate cell as a rat runs different distances at different speeds in different directions along a linear track. This demonstrates that the model can generate a consistent spatial location of firing despite changes in direction and running speed, and shows how differences in spacing of firing fields can result from a change in a single parameter of the spiking model (parameter a in equation (4.6)). The model shown in figure 3c,i, with $a=0.015$, that causes a faster rebound spike in response to a 10 ms hyperpolarizing current injection (figure 3d(i)), as well as a higher resonant frequency in response to a chirp function current injection (figure 3e(ii)) compared to traces with $a=0.01$. Because of the faster rebound, the activity in this network correspondingly transitioned more rapidly between different neurons (figure 3c(ii)), and therefore generated spatial firing patterns with narrower spacing between firing fields (figure 3d(ii)). By contrast, setting the spiking parameter to $a=0.01$ resulted in slower rebound spiking (figure 3f(iii)) and a lower resonant frequency (figure 3e(ii)). Without any other difference in the simulation, setting $a=0.01$ resulted in slower transitions between neurons (figure 3c(ii)), and therefore wider spacing between firing fields (figure 3d(ii)). Inconsistencies in spacing occurred at some speeds, possibly owing to the inconsistencies in rebound timing relative to discrete medial septum input phases.

As shown in figure 3, a change in parameters in the spiking model that causes a difference in resonance frequency and speed of rebound spiking causes a change in spacing of grid cell firing fields. Thus, the model addresses how the spatial scale of grid cells could depend upon the difference in resonance frequency of stellate cells at different dorsal to ventral positions in medial entorhinal cortex [31]. The model also shows how the decrease in resonance frequency caused by cholinergic modulation of stellate cells [46,49] could contribute to the increase in size and spacing of grid cell firing fields.
observed in rats foraging in novel environments [48,49]. The model also shows how the presence of low frequency resonance could underlie the generation of grid cells with larger size and spacing that are described in HCN1 knockout mice [51]. In the model, a difference in spacing can be obtained by shifting only a single intrinsic parameter influencing the intrinsic rebound spiking and resonant frequency of stellate cells. This provides an alternative to other possible mechanisms of grid field spacing, for example differences in the slope of the velocity-dependent change in frequency of medial septal input.

8. Response to running speed

Figure 3 shows plots of oscillatory activity switching between different populations over time as the simulated rat runs in different directions at progressively different speeds. To simulate consistent firing relative to spatial location, the model must simulate the running speed of a rat during exploration. This running speed must influence the relative duration of two intervals in the network: the interval between rebound spikes versus the interval of each cycle of medial septum input. One way this can be done is by altering the intrinsic resonance frequency and speed of rebound in stellate cells, possibly by giving different levels of baseline depolarization. Consistent with this, subthreshold resonance changes frequency with depolarization [37], though subthreshold oscillations do not [64]. In this manner, the resonance frequency could be adjusted by depolarization in proportion to movement direction and running speed. As an alternative, the model works well if running speed causes changes in the frequency of medial septal input. A change in frequency of medial septal input was used in a model using oscillatory ring attractors [6], which has been supported by data showing changes in frequency of theta cells dependent upon movement direction and speed [28]. In the simulations in the electronic supplementary material, figure S1, faster shifts in firing field occur if resonance stays the same but medial septal input frequency is reduced, thereby increasing the difference in frequency. However, this raises problems as running speed normally causes an increase in network theta frequency [65]. If medial septal input frequency were higher than resonant frequency, this would also cause shifts in firing fields but would result in precession of spiking in the wrong direction unless the medial septal input goes directly to stellate cells and interacts with a slower rebound mechanism. As the third alternative, simulations in the spiking model in figure 3c,d (and figure 4) show that increasing the strength of input from inhibitory interneurons to stellate cells in the model systematically increases the rate of transition between populations, matching an increase in velocity. The change in inhibitory input could be provided by having a population of neurons between the stellate cells and interneurons with varying levels of activity, thereby regulating the magnitude of feedback inhibition. Figure 3 shows that the model has the capacity to maintain spatially selective firing location despite changes in running speed and changes in direction on a one-dimensional track. The faster transition with larger inhibition could contribute to the narrower spacing of grid cell firing fields in dorsal medial entorhinal cortex because inhibition has been shown to be stronger and broader in dorsal versus ventral medial entorhinal cortex [66].

9. Resonance and rebound dynamics resemble oscillatory interference

As shown in the simulations, the resonance and rebound model presented here can generate the periodic beat patterns that are characteristics of oscillatory interference models [3–5]. As shown in the electronic supplementary material, figure S1, individual neurons show progressive shifts in amplitude of oscillations and the overall activity shifts between different neurons in the population. As in the oscillatory interference models, these beat patterns arise from a difference in relative frequency, in this case between the resonance frequency (determining rebound speed) of stellate cells and the medial septal input frequency. However, note that in contrast to most oscillatory interference models, the beat patterns in this model will only appear if there are competing oscillators. A single circuit will either stop firing or converge to a steady frequency. The competition between circuits with different phases has the effect of reducing the range of theta phase precession in the model in figures 2 and 3. Those models exhibit precession of spiking activity across 90° or less of the theta cycle. By contrast, theta phase precession across a wider range of phases was obtained in figure 4 by using a single inhibitory interneuron interacting with each stellate population (in contrast to using populations of inhibitory interneurons receiving phasic medial septal input as in figure 3). The overall functional properties of the network in figure 4 are similar to figure 3, but figure 4 has a much larger phase range over which stellate cells are active, resulting in substantial phase precession relative to the phase of medial septal input (figure 4d(i)c,(ii)c).

As shown in figures 3 and 4, the method of combining neurons with inhibitory interactions to cause rebound spiking provides an interesting functional rationale for the presence of theta cycle skipping in neurons of medial entorhinal cortex [17,40,41]. In addition, this model avoids the problem of the unreliable nature of subthreshold oscillations by directly focusing on the resonance properties and rebound timing shown to be highly reliable and deterministic in studies of medial entorhinal layer II neurons [29–31,33,46,50,58]. The model cannot maintain spatially selective firing without the medial septal input providing a phase signal. Reduction or removal of medial septal input results in static firing patterns or firing throughout the network (not shown). In this way, the model addresses recent data showing the loss of the spatial periodicity of grid cells when network theta rhythm oscillations are reduced by inactivation of the medial septum [10,11].

Addition of feedback excitation between the stellate cells and pyramidal cells in the model could give attractor dynamics coupled with resonance that could overcome problems with variability in spike timing similar to other models that use interactions of network oscillations [67]. The network dynamics used here overcome some issues preventing implementation of oscillatory interference with single neurons, including the variability of the temporal period of membrane potential oscillations or bistable persistent spiking [68] and the tendency of different oscillations within single neurons to synchronize [69,70].

The properties of resonance could be used in attractor models of grid cells. The model presented here shows how the intrinsic properties of individual neurons could help to maintain activity during low firing rates and theta rhythmic
spiking. Intrinsic properties relevant to this mechanism include an intrinsic current dynamics underlying resonance that can generate rebound spiking. Another mechanism using intrinsic properties of neurons involves the calcium-activated non-specific cation (CAN) current that can generate an afterdepolarization after spiking and can underlie bistability of spiking activity in some conditions [71,72]. The CAN current can cause generation of spiking that depends upon calcium influx caused by a previous spike. The properties of the CAN current in causing cyclical increases and decreases in spiking activity [73,74] were previously proposed to underlie the generation of grid cell firing properties [75,76]. On a faster time-scale, the self-sustained spiking generated by the CAN current [71,72] could provide a spike interval phase code to generate grid cell firing [7], but this suffers from the problem of variability in spike times [68]. The generation of an afterdepolarization that generates spikes after a previous spike has been used in a model [56] that combines attractor dynamics with theta phase precession, but that model did not address subthreshold membrane potential resonance or rebound from inhibition.

Previous models have not addressed the functional role of data showing theta cycle skipping in medial entorhinal cortex neurons [17,40,41], or the data showing that cross-correlations of theta cycle skipping depend upon the functional tuning properties of conjunctive grid cells and head direction cells [41]. This new model also has the benefit of addressing the loss of the spatial periodicity of grid cells when network theta rhythm oscillations are reduced by inactivation of the medial septum [10,11].

Both models using attractor dynamics and models using oscillatory interference employ a simple representation of velocity that does not address all features of the physiological data including the fact that the speed modulation of firing is often separate from the directional tuning of cells. Both types of models use movement direction as a component of velocity, but recent data show that despite many medial entorhinal cells being tuned to head direction, only a few are tuned to movement direction [77]. The predominance of head direction sensitivity in medial entorhinal cortex rather than movement direction sensitivity suggests an important role of grid cells in monitoring the angle of sensory input, which requires keeping track of head direction. The grid cells and other functional neurons in medial entorhinal cortex may interface this sensory input with path integration [78]. The path integration may primarily depend on input from neurons shown to be sensitive to movement direction in the medial septum and thalamus [28]. This supports a model related to oscillatory interference in which oscillating rings of theta cells could provide phasic input to regulate grid cell firing [6,28]. There is an important question of how the phase of the oscillating rings could be influenced by the timing of spikes owing to the difference in intrinsic resonance properties at different dorsal–ventral positions to influence the spacing of grid cell firing fields. This could be obtained if the phase and amplitude of oscillations of each ring were updated by the circular mean phase and mean amplitude relative to the directional preference of that ring for all of the active grid cells in the entorhinal cortex, as done in a previous grid cell model [76]. This may regulate the input from a large range of preferred directions to generate circularly symmetric interference that would generate hexagonal grid cell firing patterns and may also ensure that the rings have the correct phase relative to grid cell firing when the animal turns. The intrinsic properties could influence the spacing of grid cell firing fields if the pattern of spikes based on intrinsic properties influences the phase of medial septal input for multiple movement directions.

The determination of the mechanisms of grid cells will require continued modelling and new physiological experiments. This article briefly reviews a variant of the oscillatory interference model that potentially links the intrinsic resonance properties of neurons to grid cell firing and provides a circuit account for the potential role of theta cycle skipping in generating grid cell firing patterns. Different grid cell models effectively address different aspects of the experimental data and are not incompatible with each other. A model that accounts for the full range of data will likely combine elements of many of the current categories of grid cell models.

Funding statement. Research supported by NIH R01 MH60013, R01 MH61492, Silvio O. Conte Center P50 MH094263 and the Office of Naval Research MURI grant no. N00014-10-1-0936.

References

13. Climer JR, Newman EL, Hasselmo ME. 2013 Phase coding by grid cells in unconstrained environments:

77. Raudies F, Chapman GW, Brandon MP, Hasselmo ME. 2013 Movement direction is not coded by the firing of most entorhinal cells but is required by grid cell models. Soc. Neurosci. Abstr. 39, 696.11.