Lack of the presynaptic RhoGAP protein oligophrenin1 leads to cognitive disabilities through dysregulation of the cAMP/PKA signalling pathway

Malik Khelfaoui1,2,3,4, Frédéric Gambino1,†, Xander Houbaert5, Bruno Ragazzoni2,3, Christian Müller4, Mario Carta5, Frédéric Lanore5, Bettadapura N. Srikumar2, Philippe Gastrein6, Marilyn Lepleux5, Chun-Lei Zhang3, Marie Kneib1, Bernard Poulain1, Sophie Reibel-Foisset6, Nicolas Vitale1, Jamel Chelly2,3, Pierre Billuart2,3, Andreas Lüthi4 and Yann Humeau1,5

1 Centre National de la Recherche Scientifique UPR3212, CNRS, Université de Strasbourg, Strasbourg 67084, France
2 Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris 75014, France
3 INSERM, U1016, Paris 75014, France
4 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
5 Institut interdisciplinaire de neuroscience, CNRS UMR5297, University of Bordeaux, Bordeaux, France
6 Plateforme d'hébergement et d'explorations fonctionnelles, IFR 37, Strasbourg 67084, France

Loss-of-function mutations in the gene encoding for the RhoGAP protein oligophrenin-1 (OPHN1) lead to cognitive disabilities (CDs) in humans, yet the underlying mechanisms are not known. Here, we show that in mice constitutive lack of Ophn1 is associated with dysregulation of the cyclic adenosine monophosphate/phosphate kinase A (cAMP/PKA) signalling pathway in a brain-area-specific manner. Consistent with a key role of cAMP/PKA signalling in regulating presynaptic function and plasticity, we found that PKA-dependent presynaptic plasticity was completely abolished in affected brain regions, including hippocampus and amygdala. At the behavioural level, lack of OPHN1 resulted in hippocampus- and amygdala-related learning disabilities which could be fully rescued by the ROCK/PKA kinase inhibitor fasudil. Together, our data identify OPHN1 as a key regulator of presynaptic function and suggest that, in addition to reported postsynaptic deficits, loss of presynaptic plasticity contributes to the pathophysiology of CDs.

1. Introduction

Mutations in more than 80 human X-linked genes have been implicated in cognitive disabilities (CDs), a condition estimated to affect 1–3% of the population [1–3]. Consistent with human genetics, most genetic mouse models of X-linked CD display learning and memory deficits [4,5]. Yet, it is still largely unclear how mutations in CD genes interfere with the function and plasticity of neuronal circuits.

Ophn1 mutations are causal for a syndromic form of CD, including cerebellum hypoplasia and an expansion of lateral ventricles [6–8]. Some of these phenotypes are reproduced in Ophn1 mutant mice [9]. Importantly, both hyper- and hypo-expression of the oligophrenin1 (OPHN1) protein were found to be associated with CD [10], suggesting that Ophn1 dosage is important for controlling CD-relevant signalling cascades. In rodents, Ophn1 is expressed in the adult brain with higher expression levels in the hippocampus, cortex, amygdala, olfactory bulb and the cerebellum [9]. At the cellular level, Ophn1 is expressed in both neurons and glial cells where it has been shown to interact with F-actin in cellular compartments concerned with active membrane movements such as growth cones.
filopodia and dendritic spines [9,11,12]. At synapses, OPHN1 is located in both pre- and postsynaptic compartments of excitatory and inhibitory synapses [9,13].

We recently discovered that the Rho GTPase-activating protein (RhoGAP) OPHN1 interacts with endophilin, amphiphsin and Cin85, thereby controlling clathrin-mediated endocytosis through the RhoA/Rho-associated protein kinase (ROCK) pathway [13]. Lack of OPHN1 was associated with a decrease in cellular endocytosis which was efficiently reversed by ROCK antagonist, suggesting that this cascade may participate in the pathophysiology of CD associated with Ophn1 mutations. As expected from a general blockade of membrane trafficking, both membranous diffusion of postsynaptic [13–15] and presynaptic vesicular trafficking [13,16] were affected in neuronal cells in which acute or permanent deletions of Ophn1 were introduced, suggesting important pre- and postsynaptic functions for OPHN1.

One of the major signalling pathways controlling different aspects of presynaptic function and plasticity is the cyclic adenosine monophosphate/phosphate kinase A (cAMP/PKA) pathway [17]. Some of cellular cAMP/PKA-dependent processes involve the regulation of Rho/RhoA signalling [18,19]. It is thus possible that the constitutive lack of OPHN1 could lead to a dysregulation of presynaptic PKA signalling with potentially widespread consequences on presynaptic function and plasticity.

We tested this hypothesis using Ophn1-deficient animals and found that constitutive lack of OPHN1 resulted in a profound dysregulation of the cAMP/PKA signalling pathway, and a complete abolishment of PKA-dependent presynaptic long-term plasticity in two brain areas important for different forms of learning and memory: the lateral amygdala (LA) and the hippocampus. At the behavioural level, both extinction- and context-dependent renewal of conditioned fear responses were severely impaired. Using fasudil, a clinically approved kinase inhibitor, we were able to rescue the behavioural deficits in Ophn1-deficient animals. These results thus suggest that, in parallel to alterations of postsynaptic function, presynaptic deficits induced by chronic dysregulation of PKA signalling may participate in the pathophysiology of Ophn1-related CDs.

2. Material and methods

(a) Animals

All experiments were performed using male Ophn1−/− and their control littermates Ophn1+/−, housed in 12 L:12 D with ad libitum feeding. Rim1−/− mice and wild-type littermates were kindly provided by Dr T.C. Sudhof (Stanford University, Palo Alto, CA, USA). Every effort was made to minimize the number of animals used and their suffering. The experimental design and all procedures were in accordance with the European guide for the care and use of laboratory animals and the animal care guidelines issued by the animal experimental committee of Paris, Strasbourg and Bordeaux Universities.

(b) Electrophysiology

(i) Amygdala slice preparation

Standard procedures were used to prepare 330 μm thick coronal slices from three- to four-week-old male wild-type or mutant mice (C57BL/6N background). Briefly, the brain was dissected in ice-cold artificial cerebrospinal fluid (ACSF), mounted on an agar block and sliced with a vibratome (Leica VT1200 s; Germany) at 4°C. Slices were maintained for 45 min at 35°C in an interface chamber containing ACSF equilibrated with 95% O2/5% CO2 and containing (in mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 18 glucose, 4 ascorbate and then for at least 45 min at room temperature before being transferred to a superfusing recording chamber.

(ii) Amygdala recordings

Whole-cell recordings from LA principal neurons were performed at 30–32°C in a superfusing chamber as previously described [20]. Neurons were visually identified with infrared video-microscopy using an upright microscope equipped with a 60× objective. Patch electrodes (3–5 MΩ) were pulled from borosilicate glass tubing and filled with a low-chloride solution containing (in mM): 140 Cs+-methylsulfonate, 5 QX-314-Cl, 10 HEPES, 10 phosphocreatine, 4 Mg2+–ATP and 0.3 Na+–GTP (pH adjusted to 7.25 with CsOH, 295 mOsM). For current-clamp experiments, Cs+-methylsulfonate was replaced with equimolar K+–glucuronate. All experiments were performed in the presence of picrotoxin (100 μM). Monosynaptic excitatory postsynaptic currents (EPSCs) or excitatory postsynaptic potentials (EPSPs) exhibiting constant 10–90% rise times and latencies were elicited by stimulation of adjacent fibres with a bipolar twisted platinum/10% iridium wire (25 μm diameter).

(iii) Data acquisition and analysis

Data were recorded with a Multiclamp 700B (Molecular Devices, USA), filtered at 2 kHz and digitized at 10 kHz. In all experiments, series resistance was monitored throughout the experiment, and if it changed by more than 15%, then the data were not included in the analysis. Data were acquired and analysed with pCLAMP10.2 (Molecular Devices). Changes were quantified by normalizing and averaging EPSC amplitude or EPSP slope during the last 5 min of the experiments relative to the 5 min of baseline prior to long-term potentiation (LTP) induction or drug application. All values are given as means ± standard error of the mean (s.e.m.). Statistical analysis was performed using R language and environment for statistical computing. Mean values were compared between genotypes using either unpaired Student’s t-test or Mann–Whitney test as appropriate (Sigmaplot12, Systat Software).

(iv) Hippocampal slice preparation

Experiments were performed on parasagittal hippocampal slices (350 μM thick) from 19- to 24-day-old male Ophn1−/− mice and their Ophn1+/− littermates by using standard techniques [21]. Whole-cell voltage-clamp recordings (3.5–4.5 MΩ electrodes, −70 mV holding potential) were made at 30–32°C from hippocampal CA3 pyramidal cells visualized by infrared video-microscopy. Slices were perfused with an extracellular solution composed of (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2.3 CaCl2, 1.3 MgCl2, 25 glucose, saturated with 95% O2/5% CO2. Bicuculline (10 μM) and D-AP5 (50 μM) were added to the bath to block GABA-A and N-methyl-D-aspartate (NMDA) receptors. The intracellular solution was composed of (in mM): 140 Cs+–methylsulfonate, 2 MgCl2, 4 NaCl, 5 phosphocreatine, 5 QX-314, 3 Na+–ATP, 0.2 EGTA, 10 HEPES, 0.33 GTP (pH 7.3). A glass microelectrode was placed in the dentate gyrus to stimulate mossy fibres. Stimulation intensity (200 μs pulse) was adjusted just above the sharp threshold for activation of a synaptic response. Mossy fibre (MF) synaptic currents were identified according to the following criteria: robust low-frequency facilitation, low release probability at 0.1 Hz, rapid single rise times (around 1 ms) and decays free of secondary peaks that may indicate the presence of polysynaptic contamination. At the end of each experiment, LCGG-1 (10 μM), a group II mGluR agonist, was used to verify the mossy fibre origin of the EPSCs. MF-LTP was induced using a high-frequency stimulation (HFS) protocol consisting of 100 stimulations at a frequency of 100 Hz,
repeated six times with a 10 s interval between trains in the presence of bicuculline (10 μM) and the NMDA receptor antagonist D-AP5 (50 μM). HFS was performed at baseline stimulation intensity, which consisted of a single pulse delivered every 10 s (0.01 Hz). Small, hyperpolarizing voltage steps were given before each afferent stimulus allowing online monitoring of input and series resistances.

(v) Data acquisition and analysis
Access resistance was less than 20 MΩ, and cells were discarded if it changed by more than 20%. Recordings were made using an EPC 9.0 or EPC 10 amplifier (HEKA Elektronik, Lambrecht/Pfalz, Germany) and were filtered at 0.5–1 kHz, digitized at 1–5 kHz and stored in a personal computer for additional analysis (Igor Pro 5.0; Wave Metrics, Lake Oswego, OR, USA). For statistical analysis values are presented as mean ± s.e.m. of n experiments. Either a paired or unpaired Student’s t-test was used to define statistical differences between values, which were considered as significant at p < 0.05.

(c) PKA assay and cAMP measurements
PKA activity was measured using the PepTag non-radioactive cAMP-dependent protein kinase assay (V5340; Promega). Whole brain extracts or manually dissected cerebral structures were snap-frozen in liquid nitrogen. All samples were treated together, in duplicates, and corrected for protein concentration. The PepTag A1 peptide substrate was subjected to electrophoresis for 10–20 min in 1% (w/v) agarose gels, and the separated bands were photographed with a SynGene apparatus. The intensities of the bands were analysed with Gene Tool software. The basal PKA activity levels, analysis, frozen tissues were homogenized in a 0.1 M HCl solution and centrifuged at 900×g at room temperature. cAMP content was determined with an enzyme immunometric assay kit (Assay Designs no. 900-066) following the manufacturer’s instructions.

(d) Primary cell culture
Astrogial cells from Ophn1 knockout (KO) animals and wild-type (WT) controls were prepared by standard procedures as previously described [9].

(e) Western blotting
An equal amount of protein (20 μg for neurons, 30–60 μg for whole brain) was separated on 10% acrylamide/bisacrylamide gels and transferred to nitrocellulose membranes. The blots were incubated overnight at 4°C with the following primary antibodies: GluR1 phospho-Ser845 (Chemicon), GluR1 (Upstate), Tuj1 (Covance) and Ophn1 [11]. Antibody against synapsin phospho-site 1 (G257) was kindly provided by Prof. Fabio Benfenati. After incubation with the appropriate horsedarsh peroxidase-conjugated secondary antibodies (Dako, 1:1000), immunoreactive bands were visualized by enhanced chemiluminescence detection (Thermo Scientific) and captured using an ImageQuant apparatus. The density of the signals was measured using ImageJ software. Phosphorylation rate was determined either as ratios between phosphorylated and total proteins or between phosphorylated proteins and the Tuj1 loading control.

(f) Protein kinase A subunit analysis
Whole-cell extracts were performed in radio-immunoprecipitation assay buffer completed with protease and phosphatase inhibitors (Complete and PhosSTOP; Roche Diagnostics). The concentration of proteins was determined by the Bradford method (Bio-Rad). Proteins were subjected to SDS–PAGE on 10% acrylamide gels and transferred onto nitrocellulose membranes (Amersham Pharmacia Biotech). Non-specific protein-binding sites were blocked by incubation for 1 h at room temperature in 50 mm Tris–HCl (pH 8.8), 150 mm NaCl and 0.1%, Tween 20 (TBS-T) containing 10% non-fat dry milk. Incubation with primary polyclonal antibodies (anti-R1α at 1:1000 (no. 610610, BD Biosciences), anti-Cα at 1:1000 (no. 610981, BD Biosciences) and anti-GAPDH at 1:1000 (sc-25778, Santa-Cruz)) was carried out in the same buffer overnight at 4°C. After washing in TBS-T, membranes were incubated for 1 h at room temperature with the peroxidase-conjugated anti-mouse IgG at 1:5000 (sc-2005, Santa-Cruz) or anti-rabbit IgG at 1:5000 (no. 70745, Cell Signalling).

(g) Fear conditioning
Discriminative fear conditioning was performed on two- to three-month-old animals treated with the ROCK and PKA kinases inhibitor fasudil also known as HA1077 purchased from LC laboratories (Boston, MA, USA). Fasudil was dissolved in daily drinking water at 0.65 mg ml−1 and given orally three days before starting and during the fear tests. Acquisition and retrieval of cued fear conditioning took place in two different contexts (context A and B) as previously described [22]. Briefly, on day 1, mice were submitted to a habituation session in context A, in which they received four presentations of the CS+ and the CS− (CS+ : 30 s, consisting of 50 ms pips repeated at 0.9 Hz, 2 ms rise and fall, pip frequency 7.5 kHz; CS− : same using either 3 kHz or white noise, 80 dB). Discriminative fear conditioning was performed the same day by pairing the conditioned stimulus (CS+) with an unconditioned stimulus (US; 1 s foot-shock, 0.6 mA, 5 CS−–US pairings; inter-trial interval: 20–180 s). The onset of the US coincided with the offset of the CS+. The CS− was presented after each CS+–US association but was never reinforced (five CS− presentations, inter-trial interval: 20–180 s). On day 2 and day 3, conditioned mice were submitted to an extinction test in context B during which they received four presentations of the CS− and 12 presentations of the CS+. A week later, mice were submitted to a fear retrieval test (context B, 4× CS− and 4× CS+) and finally to a fear renewal test (context A, 4× CS− and 4× CS+).

(h) Dendritic spine analysis
Neurons from standard coronal amygdala slices were filled intracellularly with 100 μM Alexa 594 with the patch pipette. Labelled neurons were imaged using an Olympus two-photon microscope and a 60× water-immersion objective. Eight-bit images were analysed using NeuroJ plugin from ImageJ software (http://rsweb.nih.gov/ij/) with which length and density of spines were extracted.

(i) Reagents
Picrotoxin was from Sigma-Aldrich (Saint Quentin Fallavier, France), forskolin, cyclothiazide and H89 were from Tocris Biosciences (Bristol, UK), and QX-314 was from Alomone Labs Ltd. (Jerusalem, Israel). Tetrodotoxin was purchased from Latoxan and thapsigargin from Calbiochem (Merck KGaA, Darmstadt, Germany). HA-1077 was from purchase from LC laboratories (Woburn, MA, USA).

3. Results
(a) Brain-area-specific hyper-activation of protein kinase
A signalling in Ophn1−/− mice
To measure PKA activity in brains of mutant mice, we first analysed whole-brain extracts using a PepTag assay (figure 1a,b).
Figure 1. Brain-area-specific hyper-activation of PKA signalling in Ophn1−/− mice. (a) Characterization of the PepTag assay. (b) Basal PKA activity was determined in whole brain lysates from Ophn1−/− and Ophn1+/− mice using a PepTag assay. Activation of AC and inhibition of PKA was tested in presence of cAMP (1 μM) or PKI (40 ng μl−1), respectively. (c) Summary graph illustrating the PKA activity levels under basal conditions and following AC activation by increasing concentrations of forskolin. Saturation of AC activation was controlled by addition of cAMP (1 μM) and test specificity by addition of PKI (n = 6). (d) PepTag assays were repeated on micro-dissected brain areas as indicated (n = 3 animals in each group). **p < 0.01.

Strikingly, basal PKA activity was increased approximately fourfold in brains from Ophn1−/− animals (PKA activity: Ophn1+/-, 8 ± 3%; Ophn1−/−, 33 ± 11%; n = 4, p < 0.01; figure 1b). Then, we tested for endogenous adenylate cyclase (AC) by forskolin (FSK) treatment in cultured KO and WT astroglial cells (figure 1c), and observed a strong increase in PKA activity in both genotypes. FSK-induced activation excluded any further increase by addition of cAMP (1 μM; figure 1c). All PKA activity was blocked by the PKA inhibitor PKI (1 μM) demonstrating the specificity of the assay (figure 1c).

Because PKA hyperactivity could reflect higher cAMP levels, we quantified cAMP concentrations in Ophn1−/− and Ophn1+/− brain extracts. cAMP concentrations were identical between genotypes (p > 0.05, n = 3 independent experiments; electronic supplementary material, figure S1a), suggesting that the higher PKA activity observed in mutant brains was not a consequence of upstream AC hyperactivity. In an attempt to further explore the origin of PKA overactivity, we tested the expression of ubiquitous PKA regulatory (R1α) and catalytic (Cα) PKA subunits [13], but did not observe any difference between KO and WT mice (see electronic supplementary material, figure S1b).

In order to obtain direct support for hyperactivity of synaptic PKA signalling, we analysed the phosphorylation levels of several key proteins in both pre- and postsynaptic compartments (see electronic supplementary material, figure S1c). First, based on previous reports demonstrating that mutations in the Ophn1 gene were associated with alterations in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor (AMPAR) trafficking [13,14], a process which depends on AMPAR phosphorylation [23], we tested the phosphorylation state of AMPARs in Ophn1−/− and Ophn1+/− brain extracts using specific antibodies against phosphorylated forms of AMPARs [24] (see electronic supplementary material, figure S1c). We first observed that, even though the total amount of the AMPAR subunits GluA1 and GluA2 was similar in both genotypes (data not shown), PKA-mediated phosphorylation of AMPARs was higher in Ophn1−/− brains, when compared with WT animals. Using specific antibodies against phosphorylated forms of synapsins [25], we found that PKA activity was also increased in the presynaptic compartment (see electronic supplementary material, figure S1c).

Finally, using micro-dissected brain samples, we tested whether abnormal PKA activity was homogeneously present across Ophn1−/− brains or whether there were differences between brain areas. PKA activity was found to be higher in hippocampus (473 ± 142%, p < 0.01) and in cortex (555 ± 121%, p < 0.01; figure 1d), but not in lateral amygdala (LA), and in thalamus (figure 1d) or in cerebellum (data not shown), indicating that the constitutive lack of OPHN1 may specifically impact the function of different brain areas.

(b) Constitutive lack of OPHN1 abolishes PKA-dependent presynaptic long-term potentiation downstream of AC activation

In order to examine the physiological consequences of chronically elevated levels of PKA signalling, we first analysed synaptic function and plasticity in the lateral amygdala, a brain area receiving presynaptic inputs from brain areas with elevated (cortex) and normal (thalamus) PKA activity in Ophn1 KO animals. Whole-cell current- and voltage-clamp recordings were obtained from LA principal neurons located in the dorsal subdivision of the LA [26–28]. Monosynaptic EPSCs or EPSPs at thalamo-LA and cortico-LA synapses were elicited by stimulating fibres from the internal capsule,
containing thalamic afferents or from the external capsule, containing cortical afferents (figure 2a) [29]. Interestingly, both inputs express LTP following cued fear conditioning [30,31].

Presynaptic PKA-dependent LTP can be induced in the cortico-LA pathway [32,33]. Presynaptic cortico-LA LTP can be induced by pairing stimulation of the cortico-LA pathway with concurrent stimulation of thalamic inputs [28] or with postsynaptic depolarization of LA principal neurons [34] (figure 2a–c). This form of LTP was associated with a change in the postsynaptic response to paired-pulse stimulation (paired-pulse ratio, PPR; figure 2c(i)) and was blocked by pre-incubation with forskolin (figure 2d). Immediately after pairing, we also noted a transient increase in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) returning to baseline levels within 10–15 min (figure 2b,c(ii)). Similar to LTP of evoked EPSC amplitude, potentiation of sEPSC frequency did not occur in the absence of postsynaptic depolarization or in the presence of FSK (figure 2d).

Next, we examined LTP of evoked and spontaneous synaptic transmission at cortico-LA synapses in \( Ophn1^{+/y} \) animals and wild-type littersmates. Although LTP of evoked transmission was normal in \( Ophn1^{+/y} \) controls (198 ± 17%, \( n = 7, p < 0.05; \) figure 2e), it was completely absent in \( Ophn1^{-/-} \) mice (107 ± 8%, \( n = 10, p < 0.05; \) figure 2e). By contrast, and consistent with normal cAMP levels in \( Ophn1^{-/-} \) mice, pairing-induced potentiation of sEPSC frequency were similar in \( Ophn1^{+/y} \) and \( Ophn1^{-/-} \) littersmates (figure 2f(ii)). Together, these findings indicate that lack of OPHN1 results in a failure in PKA-mediated control of glutamate release downstream of AC activation.

c) Selective loss of PKA-dependent presynaptic long-term plasticity in \( Ophn1^{-/-} \) mice

The above findings show that at cortico-LA synapses, AC activity controls spontaneous and evoked glutamate release via two distinct mechanisms, only the latter being OPHN1-dependent. To further characterize these two cellular pathways, we analysed evoked and spontaneous glutamate release following pharmacological activation of AC by FSK (10 \( \mu M \)) while stimulating the external capsule (figure 3a–g). A brief application of FSK (10 min) led to a long-term increase in both evoked (EPSC amplitude) and spontaneous (EPSC frequency) glutamate release (figure 3b,c). However, when challenged by pharmacological and molecular manipulations previously reported to block the FSK effect on evoked release (e.g. manipulations of the PKA/Rim1a/L-type voltage-gated calcium channel pathway) [33,35], spontaneous release was still increased by FSK (figure 3d–f), and occluded by pre-incubation of slices with thapsigargin (5 \( \mu M \)), a blocker of Ca\(^{2+}\) stores (figure 3f). Importantly, the increase in sEPSC frequency was independent of PKA activity (figure 3e), suggesting that the two pathways diverge after AC activation.

Consistent with the pairing-induced increase in sEPSC frequency preserved in \( Ophn1^{+/-} \) mice (figure 2f(ii)), sEPSC frequency was equally increased by brief application of FSK in both genotypes (figure 3g(i)). Next, in order to test if postsynaptic PKA activity participates in FSK-induced potentiation at cortico-LA synapses, we introduced the PKI peptide, an efficient PKA blocker (10 \( \mu M \)) through a patch pipette into the postsynaptic cell for at least 20 min. Under these conditions, normal FSK-induced potentiation of evoked transmission was
observed in Ophn1+/y mice (control: 147 ± 12%, n = 6, PKI: 165 ± 26%, n = 5, p > 0.05; figure 3g(ii)). Strikingly, however, when tested in Ophn1−/− mice, FSK-induced potentiation of evoked transmission was completely abolished (84 ± 25%, n = 8, p > 0.05; figure 3g(ii)).

Finally, to test whether loss of presynaptic regulation by PKA generalized to another converging excitatory synaptic input onto LA principal neurons, we examined the effect of FSK application on thalamo-LA synapses (figure 3h). In keeping with normal thalamic PKA activity in Ophn1−/− mice (figure 1d), FSK-induced LTP of evoked synaptic transmission was not impaired in Ophn1−/− mice (Ophn1+/y: 182 ± 37%, Ophn1−/−: 214 ± 35%, n = 6 and 5, p > 0.05; figure 3h), suggesting that at these thalamo-LA synapses AC/PKA-mediated control of neurotransmitter release was preserved.

(d) Lack of OPHN1 abolishes presynaptic long-term potentiation in hippocampus

Hippocampus is among the brain structures in which PKA activity was strongly increased in Ophn1−/− mice. PKA-dependent forms of presynaptic LTP exist at synaptic contacts between dentate gyrus granule cells and CA3 pyramidal neurons—the so-called mossy fibre terminals [36,37]. Presynaptic mossy fibre LTP requires Rim1α [38] and is regulated by pre-synaptic kainate receptors [39], thus strongly resembling presynaptic LTP at cortico-LA synapses [28,33]. We thus examined synaptic transmission and plasticity at hippocampal mossy fibre synapses (figure 4a). Using a minimal stimulation approach, we did not find any difference in basic synaptic properties between Ophn1−/− mice and littermate controls including both pre- and postsynaptic read-outs (electronic supplementary material, figure S2a–c). To examine mossy fibre LTP, we applied a tetanization protocol (100 Hz, 1 s, repeated six times with 10 s intervals), which induced short-term potentiation (STP) followed by LTP, two AC/PKA-dependent forms of plasticity in Ophn1+/y mice [40,41] (figure 4b). In stark contrast, both STP and LTP were largely absent in Ophn1 mutant mice (at 1 min: Ophn1+/y, 347 ± 91%; Ophn1−/−, 173 ± 63%, p < 0.05; at 30 min: Ophn1+/y, 160 ± 30%; Ophn1−/−, 115 ± 35%, p < 0.05; figure 4c). Thus, consistent with the observed brain-area-specific hyperactivity of the PKA signalling pathway, lack of
presynaptic PKA-dependent long-term plasticity generalizes across multiple brain areas in Ophn1+/y mice suggesting that impaired presynaptic plasticity might represent a hallmark of OPHN1-associated CDs.

(e) PKA inhibitor rescues impaired fear learning in Ophn1+/y mice

To examine the behavioural consequences of increased presynaptic PKA activity and lack of presynaptic long-term plasticity on amygdala- and hippocampus-dependent learning and memory, we analysed the acquisition, retrieval and extinction of classical fear conditioning in Ophn1+/y and Ophn1−/− animals (figure 5). Both Ophn1+/y and Ophn1−/− mice exhibited low freezing levels before conditioning (data not shown), and normal freezing levels when tested 24 h after pairing of the auditory conditioned stimulus with the US (mild foot-shock; extinction 1 in figure 5b,c). Thus, consistent with the proposed modulatory role for cortico-LA LTP in fear conditioning [20,22], lack of OPHN1 was not associated with a deficit in conditioned fear behaviour. However, although Ophn1+/y mice submitted to repeated non-reinforced CS presentations showed clear within-session fear extinction (extinction 2 in figure 5b,c), which resulted in the formation of a long-term extinction memory (extinction retrieval, figure 5c), Ophn1−/− mice exhibited significant less within- and across-session extinction suggesting a deficit in the acquisition and/or consolidation of extinction memories. Notably, when inducing fear renewal by placing the animals back into the conditioning context, Ophn1−/− mice showed markedly higher freezing levels in the presence of both the CS− and the CS+ (CS−: figure 5c and data not shown). This is consistent with the observed deficit in presynaptic hippocampal mossy fibre potentiation, because fear extinction and context-dependent...
fear renewal not only require an intact amygdala but are also hippocampus-dependent [42].

To test whether overactivation of PKA signalling causally contributed to the impaired fear learning, we treated Ophn1⁻/⁻ mice and control littermates with the clinically approved PKA inhibitor fasudil for three weeks. Indeed, fasudil treatment was able to reduce PKA activity in Ophn1⁻/⁻ mice (figure 5a). Although fasudil did not affect acquisition, extinction and extinction retrieval in littermate controls (freezing levels in Ophn1⁺/⁺, CS⁻#1ext ctrl: 71 ± 12%, fasudil: 51 ± 5%; CS⁻#1ext ctrl: 25 ± 15%, fasudil: 10 ± 3%; CS⁻#1ext ctrl: 44 ± 14%, fasudil: 27 ± 12%, n = 5 and 7, p = 0.114, p = 0.113 and p = 0.365, respectively), it completely reversed the extinction memory deficit seen in Ophn1⁻/⁻ mice (figure 5c). Fasudil treatment had no effect on fear renewal independent of the genotype (figure 5c and data not shown).

4. Discussion

Our study demonstrates that constitutive lack of OPHN1 leads to abnormally high levels of PKA activity and to the uncoupling of the cAMP/PKA signalling pathway from synaptic function and plasticity. In particular, presynaptic PKA-dependent long-term plasticity in both amygdala and hippocampus was severely compromised in the absence of OPHN1.

It is well established that cAMP signalling plays a central role in neuronal plasticity and learning [43,44]. This includes both acute effects mediated through activation of PKA and long-term changes involving transcriptional regulation [45]. Indeed, PKA activation leads to the phosphorylation and activation of the cAMP response element binding protein (CREB), which is required for activity-dependent gene transcription during the late phase of postsynaptic LTP and controls neuronal excitability (for a review, see [45]), two mechanisms which could also contribute to the behavioural deficits observed in Ophn1-deficient mice. In addition, PKA signalling is involved in hippocampal LTD [46,47]. However, because dihydroxyphenylglycine (DHPG)-induced LTD is normal in Ophn1⁻/⁻ mice [9], it is unlikely that a deficit in hippocampal NMDAR-dependent LTD plays a major role in the impairment of contextual fear memory. Interestingly, normal learning and memory requires cAMP/PKA signalling to operate in an optimal range. Either too much activity or too little activity results in learning deficits, suggesting the existence of complex compensatory feedback mechanisms. Accordingly, modulators of cAMP phosphodiesterases (PDEs) have been successfully used to correct for memory deficits induced by up- or downregulations of PKA signalling [43,48]. Mice expressing a constitutively active form of Gos in forebrain neurons exhibit lower brain cAMP levels because of an increase in PKA-dependent PDE activity [48]. Gos overexpressing animals exhibited a deficit in one-trial fear learning which could be overcome by multiple learning trials and corrected by application of a PKA inhibitor [48]. In keeping, we found that Ophn1-deficient mice show normal fear learning in a multi-trial learning paradigm, but severely compromised extinction learning, another form of learning depending on cAMP/PKA signalling [49]. Interestingly, genetic inhibition of PKA in the forebrain was shown to facilitate learning of fear extinction in mice [49], with a pronounced effect within extinction sessions, suggesting a crucial role of PKA signalling in some fast CREB independent and behaviourally relevant plasticity processes such as the one reported here.

Because contextual fear conditioning partially depends on hippocampal structures [50], and is also affected by manipulations of PKA signalling [51], we propose that both amygdala- and hippocampus-related deficits contribute to the physiological and behavioural phenotype of Ophn1⁻/⁻ mice. We cannot exclude, however, that functional deficits in other brain areas, such as the medial prefrontal cortex [52,53], also contribute to the impaired formation of long-term extinction memories.

Our data also demonstrate that treatment with fasudil, a clinically approved inhibitor of the PKA and RhoA/ROCK pathways, can rescue, at least in part, the biochemical and behavioural phenotype caused by the constitutive lack of OPHN1. The behavioural rescue could be explained by an action of fasudil on PKA and/or ROCK. Indeed, we previously showed that in Ophn1⁻/⁻ mice not only PKA but also ROCK activity is upregulated [13]. Thus, the behavioural deficits induced by constitutive absence of OPHN1 are not caused by irreversible developmental deficits, but most likely reflect compensatory changes in signalling pathways that can be reversed acutely by pharmacological interventions.

While previous work has mainly focused on the role of OPHN1 in postsynaptic plasticity mechanisms, our study reveals that lack of OPHN1 has deleterious consequences on presynaptic PKA-dependent LTP in both amygdala and hippocampus. Even though LA projection neurons in Ophn1⁻/⁻ mice exhibited postsynaptic deficits (see below), we believe that the lack of presynaptic LTP cannot be accounted for by postsynaptic factors. Most importantly, we found that in wild-type mice pairing of pre- and postsynaptic activity resulted in the simultaneous induction of two forms of associative presynaptic plasticity: a cAMP- and PKA-dependent increase in evoked synaptic transmission and a cAMP dependent, but PKA-independent increase in spontaneous synaptic transmission. Lack of OPHN1 resulted in the selective ablation of PKA-dependent LTP of evoked transmission with no effect on plasticity of spontaneous transmission. Together, with the fact that postsynaptic NMDA responses were not reduced (electronic supplementary material, figure S3d,e), that postsynaptic LTP at thalamo-LA inputs and short-term synaptic plasticity during repetitive stimulation were normal (electronic supplementary material, figures S4 and S5), and that FSK-induced potentiation of evoked transmission was preserved in the presence of postsynaptic PKI, this strongly argues that lack of OPHN1 leads to a dysregulation of presynaptic PKA signalling.

In hippocampal slice preparations, acute downregulation of oph1 expression using siRNA approaches leads to alterations in the density and morphology of postsynaptic spine density along with changes in AMPARs mobility and deficits in postsynaptic LTP [14]. Consistent with these results and with the fact that dendritic spine morphology is affected in several genetic mouse models for X-linked intellectual disabilities (ID), including Ihnap1 and Ophn1 [9,54], this suggests an important role for deficits in postsynaptic function and plasticity in the pathophysiology of X-linked ID. Although LA projection neurons in Ophn1⁻/⁻ mice also exhibited a significant decrease in spine density and an increase in spine length (electronic supplementary material, figure S3a,b), postsynaptic LTP at thalamo-LA inputs was normal, similar to previous findings at Schaffer collateral-CAl synapses in the hippocampus of Ophn1⁻/⁻ mice [9]. Together,
these data argue that in the constitutive mouse model, postsynaptic plasticity is preserved whereas presynaptic LTP is strongly compromised.

How could the constitutive absence of OPHN1 lead to presynaptic dysfunction? In other cell types, activation of the Rho-GTPases Cdc42 and Rac depends on cAMP/PKA activity (for review see [55]). Thus, constitutive hyperactivity in this pathway might lead to adaptive changes eventually uncoupling Rho-GTPase signalling from its upstream control by PKA. Alternatively, because Rho-GTPases are important regulators of the synaptic actin cytoskeleton (for review see [56]), alterations in the presynaptic cytoskeleton may result in the mislocalization of various components of the cAMP/PKA pathway and its targets [55], thereby interfering with spatially compartmentalized signalling complexes.

Dysregulation of Rho-GTPase signalling is implicated in other forms of presynaptic plasticity. The Rho-GTPase Cdc42 has been identified as a crucial component of the signalling machinery underlying long-term homeostatic scaling of presynaptic release probability at the Drosophila neuromuscular junction [57]. Interestingly, both Cdc42-dependent homeostatic scaling and different forms of presynaptic LTP converge upon regulation of presynaptic voltage-dependent calcium channels [35,57,58]. This may suggest that lack of OPHN1 might result in a profound dysfunction of presynaptic regulatory signalling systems contributing to both long-term homeostatic and Hebbian forms of plasticity. Our findings indicate that deficits in presynaptic regulatory signalling pathways may be an important factor contributing to X-linked ID.

Acknowledgements. We acknowledge C. Herry and J. Courtin for their help in setting the behavioural test, and the Pole in vivo for its help in housekeeping the mouse lines.

Funding statement. This study was supported by grants from the Agence Nationale pour la Recherche (Y.H., J.C.), the European Neuroscience Institutes Network (Y.H.), the Novartis Research Foundation (A.L.), the National Center of Competences in Research SYNAPSYS - The Synaptic Bases of Mental Diseases’ supported by the Swiss National Science Foundation (A.L.), the European Union’s Seventh Framework Programme no. 241995, project GENCODYS, and Sanofi Aventis.

References
