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Lipid functions in cytochrome bc
complexes: an odd evolutionary transition

in a membrane protein structure
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Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b6f and
the yeast bc1 complexes that function, respectively, in photosynthetic and respiratory electron trans-
port. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b6f complex
overlap four sites in the Chlamydomonas reinhardtii algal b6f complex and four in the yeast bc1 com-
plex. The proposed lipid functions include: (i) interfacial–interhelix mediation between (a) the two
8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and
the six trans membrane helices of the peripheral domain (cyt f, iron–sulphur protein (ISP), and four
small subunits in the boundary ‘picket fence’); (ii) stabilization of the ISP domain-swapped trans-
membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a
‘latch’ to photosystem I provided by the b-carotene chain protruding through the ‘picket fence’;
(v) presence of a lipid and chlorophyll a chlorin ring in b6f in place of the eighth helix in the
bc1 cyt b polypeptide. The question is posed of the function of the lipid substitution in relation
to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide.
On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the
p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage
of p- to n-side trans membrane signalling functions in b6f, with the lipid either mediating this func-
tion or substituting for the trans membrane helix of a signalling protein lost in crystallization.

Keywords: assembly; cytochrome complex; LHCII kinase; quinol/quinone; super-complex;
trans membrane signalling
1. INTRODUCTION
The crystal structure of the 230 kDa (including prosthe-
tic groups) symmetrically dimeric cytochrome (cyt)
b6f complex of oxygenic photosynthesis has been deter-
mined for the filamentous cyanobacteria Mastigocladus
laminosus [1–4] and Nostoc PCC 7120 [5], and the
green alga Chlamydomonas reinhardtii [6]. The Protein
Data Bank (PDB) accession numbers are, respectively,
(i) M. laminosus: 2E74 (native), 2E75 (with bound
electrochemically negative (n)-side inhibitor, 2-nonyl-
4-hydroxyquinoline N-oxide, NQNO), 1VF5 and
2E76 (with tridecyl-stigmatellin, usually considered
an electrochemically positive (p)-side inhibitor, but
found at both n- and p-side quinone-binding sites),
2D2C (with p-side inhibitor, DBMIB)]; (ii) Nostoc:
2ZT9 (native); (iii) C. reinhardtii: 1Q90 (with tridecyl-
stigmatellin). The crystal structures are consistent in
describing eight polypeptide subunits, 13 trans mem-
brane helices (TMHs) per monomer and seven
prosthetic groups (four haems (haem f on the p-side
luminal phase, two b-type haems, bp and bn, on the
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p- and n-sides of the complex, covalently bound haem
cn whose central Fe atom is within 4 Å of the propionate
of haem bn), one [2Fe–2S] cluster at the p-side interface,
one chlorophyll a, and one b-carotene]. Four of the five
redox prosthetic groups, with the exception of haem cn,
have the corresponding functional groups haems c1, bp

and bn, and the [2Fe–2S] cluster, in the cyt bc1 complex.
The core of the cyt b6f complex consists of: (i) the

four TMHs of the cyt b subunit containing two trans
membrane haems, which is structurally and function-
ally equivalent to the N-terminal trans membrane
helical (helices A–D) haem-binding domain of the
eight TMH cyt b subunits in the bc1 complex
(reviewed recently in [7]); (ii) subunit IV, with three
TMHs that are structurally homologous to TMHs
E–G of the bc1 complex. The peripheral domain of
the b6f complex consists of six single TMH subunits,
cyt f [8], the Rieske iron–sulphur protein (ISP) [9]
and the small photosynthetic electron transport (Pet)
subunits G, N, L and M that have been described as
‘hydrophobic sticks’ [10]. A ribbon diagram of the
structure derived from PDB 2E74 is shown in figure 1a.

A dependence of the membrane protein crystal
structures on the presence of specific lipids has been
demonstrated for a number of membrane proteins and
protein complexes. These include the photosynthetic
light-harvesting chlorophyll protein [11], the bacterial
This journal is q 2012 The Royal Society
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Figure 1. Cytochrome b6f complex of Mastigocladus laminosus (PDB 2E74). (a) Redox groups in the cyt b6f complex. The trans
membrane b-haems (bp and bn) are shown in green, and haem cn in black. Haem of cyt f soluble domain is shown in red; [2Fe–
2S] cluster of the ISP is shown as brown and yellow spheres (brown, Fe; yellow, S). The eight polypeptides in cyt b6f monomer

are shown as ribbons (cyt f, cyan; cyt b6, light brown; ISP, pink; subIV, yellow; Pet G, gray; Pet L, green; Pet M, wheat; Pet N,
dark blue). (b) Lipid-, detergent- and pigment-binding sites in cyt b6f. Natural acidic sulfolipid is shown in wheat. Natural
galactolipid, monogalactosyl-diacylglycerol (MGDG), in C. reinhardtii b6f structure (PDB 1Q90) are in cyan and red. The syn-
thetic lipid, dioleoylphosphatidylcholine (DOPC), used for crystallization of b6f from M. laminosus and Nostoc PCC 7120 is
shown in red. Ordered molecules of the detergent n-undecyl-b-D-maltopyranoside (UDM) found in the cyanobacterial b6f
structures are shown as, white and red sticks. Native chlorophyll a (chl-a), b-carotene (b-car) and eicosane (from
C. reinhardtii b6f ) are shown as green, yellow and dark blue sticks. Figure was generated by superposition of C. reinhardtii
(PDB 1Q90) and M. laminosus b6f (PDB 1VF5, 2E74).
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photosynthetic reaction centre [12–16], photosynthe-
tic reaction centres II [17–19] and I [18,20], bovine
[21] and bacterial cyt oxidase [22,23] and the cyt bc1

complex [24].
2. DISCUSSION
Lipid functions in the b6f complex, described in
figure 1b, include [25]: first, n-side and p-side stabiliz-
ation of the dimer structure, the former analogous
to function of the second cardiolipin in the bc1 complex
(yeast; 3CX5 [26]); and secondly, n-side stabilization
of the domain-swapped trans membrane helices of
the high potential Rieske ISP by anionic sulpholipid
[25,27], and by phosphatidic acid in the yeast bc1 com-
plex [26]. Thirdly, lipids also mediate the division
between a bipartite intra-membrane structure of the
b6f complex, in which each monomer of the dimer con-
sists of: (i) the conserved core consisting of the cyt b and
subunit IV polypeptides, with four and three TMHs,
respectively; (ii) the peripheral domain containing the
single TMH of cyt f and the domain-swapped TMH
of the ISP and the four small peripheral hydrophobic
peptides, Pet G, L, M and N, the latter a set of single clo-
sely packed TMHs that define a unique ‘picket fence’
around each monomer. The spatial distribution of the
subunit polypeptides and their B-factors are consistent
with the concept of a two-tiered structure: (a) the poly-
topic core of the cyt b6 and suIV subunits with four and
three TMHs, respectively, the only polytopic subunits in
the complex; and (b) a peripheral domain containing
the single TMH of cyt f, ISP, Pet G, L, M and N. The
function of the lipids in mediating interactions between
the core and peripheral domain, and thus stabilizing the
complex, is a consequence of the binding sites of the p-
side lipids residing on residues from both the cyt b6 and
‘subunit IV’ subunits of the core, and on the four single
Phil. Trans. R. Soc. B (2012)
TMH subunits, Pet G, L, M and N, in the total set of six
single TMH subunits in the peripheral domain [18,25].
(a) Two unique lipid functions

(i) Formation of a super-complex of the b6f complex with
the photosystem I reaction centre
A curious situation exists for the function of the lipid-
like b-carotene molecule. Carotenoids serve a univer-
sal role in photosynthesis as a quencher of the
deleterious chlorophyll triplet state whose decay to
the ground state can be coupled to the generation of
excited state singlet oxygen, which is deleterious to
plant and human tissue. Thus, on the one hand, the
b6f complex contains a b-carotene whose function is
ostensibly to carry out a triplet–triplet transfer and
thus to quench the chlorophyll triplet state and thereby
prevent the formation of singlet oxygen. However,
crystal structures of the b6f complex from both the cya-
nobacteria and from a green alga are in agreement with
a distance of closest approach of the single chlorophyll
a in the structure and the one b-carotene of 14 Å
[1,6,28]. Theoretically, this separation is much too
large for efficient triplet–triplet transfer [29]. How-
ever, a significant extent of such energy transfer,
measured on a rapid time scale, less than 8 ns, has
been determined [28]. It is noted, however, that if
the only function of the b-carotene would be to carry
out triplet–triplet transfer, it should be in a position
much closer to the chlorophyll a in the structure.
Therefore, it is inferred that it has at least one
additional function in the complex.

Considering its position in the structure, in which
the b-carotene protrudes through the ‘picket fence’,
between the Pet G and Pet M single TMHs
by approximately 11 Å (figure 2), it is suggested
that it could function as a ‘latch’ that connects to
another structure in the photosynthetic membrane.

http://rstb.royalsocietypublishing.org/
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Figure 2. The exposed (11 Å) chain of b-carotene that is
proposed to be a ‘latch’ to photosystem I, mediating the for-
mation of a super-complex [30]. The b6f complex has a
peripheral b-carotene inserted into the trans membrane

core of the complex (PDB 2E74). This pigment overlaps
with the position of a peripheral cardiolipin of the yeast res-
piratory cyt bc1 complex (PDB 3CX5) that mediates the
formation of a bc1–cyt c oxidase super-complex. The exten-

sion of the b6f b-carotene into the lipid bilayers is proposed
to allow it to act as a structural antenna for the formation
of b6f–photosystem I super-complex. 2Fo-Fc map, 1.0s
(approx. 0.1 e2/Å3).
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Examination of superimposed b6f and bc1 structures
indicates that the enigmatic b-carotene in the b6f com-
plex is in a position similar to that of a cardiolipin [31],
which is positioned at the interface of a super-complex
of the bc1 complex formed with cyt oxidase in the
bovine respiratory chain [32,33]. It had previously
been suggested that formation of a cyt b6f—photosys-
tem I (PSI) reaction centre ‘super-complex’ could be
mediated by the b-carotene [6,34]. The b6f complex
in the green alga C. reinhardtii has been isolated in a
large (‘super’) complex that includes the PSI reaction
centre [30]. Thus, it is proposed that the surface-
exposed and significantly protruding b-carotene in
the peripheral domain of the b6f complex is involved
in mediating the formation of a super-complex with
the PSI reaction centre complex.
(ii) Lipid replacement of a trans membrane helix: trans-
membrane signalling in the b6f complex; an unusual
transition in evolution
It has long been known [35,36] that the eight TMHs
of the cyt b subunit of the cyt bc1 complex are split
into two subunits in the b6f complex: firstly, the four
TMH cyt b6 subunit, which corresponds to the N-
terminal haem-binding four TMHs of the bc1 com-
plex, and secondly subunit IV, consisting of three
TMHs, the fourth largest subunit in the b6f complex.
Thus, the eight TMHs (A–H) in the cyt b subunit
of the cyt bc1 complex are replaced by seven TMHs
(A–G) in the b6f complex. However, with no material
in this niche formed by the eighth TMH in bc1, a
vacuum would result at this position in the structure
Phil. Trans. R. Soc. B (2012)
of the b6f complex. Presumably, membrane protein
structures abhor a vacuum (see discussion in [37]).
It has recently been found that this space in the b6f
complex can largely be filled by a lipid and the
bound chlorophyll a [25] (figure 3). The eight versus
seven TMH problem in the cyt b polypeptide in
energy-transducing membranes has previously been
discussed in the evolutionary context of the residence
of the split (four þ three) seven TMHs of b6f-like com-
plexes in the ‘green clade’ [38]. In addition to the
questions posed in [38] in the context of the finding
that a lipid molecule in the b6f complex occupies
much of the space filled by the eighth TMH in the
bc1 complex, one may ask: (i) which cyt bc complex
appeared first in evolution, the respiratory or photo-
synthetic cyt bc complex? (ii) Thus, was the eighth
TMH (the ‘H’ helix) replaced by two subunits consist-
ing of seven TMHs, with a space in the structure for a
lipid or another TMH from another subunit? (iii)
Alternatively, was the sequence of events vice versa,
i.e. the two subunits with seven TMHs replaced by a
single cyt b subunit with eight TMHs? (iv) What was
the ‘driving-force’ or ‘evolutionary pressure for one
direction of the change or the other? A hypothesis
for the answer to question (iv) is provided below.

Briefly summarizing available dating information
and directions in the relevant branches of the evol-
utionary tree [38,39]: (i) carbon signatures implying
established life in the absence of evidence for the
presence of molecular oxygen have been found in
Greenland rocks that have been dated to 3.8 Ga
[40], implying the presence of bacteria containing
chemo-lithotrophic respiratory chains; (ii) the pres-
ence of these bacteria substantially precedes that
of the molecular oxygen (2.8–2.4 Ga [40]) that is
associated with the existence of primitive oxygenic
photosynthetic bacteria (i.e. cyanobacteria); (iii) the
subunit structure of the b6f complex from the cyano-
bacteria, with eight subunits, five redox prosthetic
groups and seven prosthetic groups in total, has a
greater degree of complexity than that of the proteo-
bacterial bc1 complex that possesses three protein
subunits and a total of four prosthetic groups [41].
Therefore, although not certain, it does not seem unli-
kely that the transition of the cyt bc complex in
evolution was from the proto-bc1 complex with an
eight TMH cyt b polypeptide to the seven TMH b6f
complex present in the ‘green clade’, consistent with
a ‘respiration-early’ hypothesis [42].
(b) The evolutionary force in the cytochrome b
transition: a hypothesis

It is proposed that an evolutionary selection for this
transition is trans membrane signalling in the b6f com-
plex in which the level of plastoquinol or quinol
oxidation by the Rieske protein on the p-side of the
complex can activate an enzyme bound on the n-side
of the complex, studied mostly for the light harvesting
complex II (LHCII) kinase [43–45] that regulates
state transitions of light-harvesting chlorophyll pro-
teins. The p-side site of the quinol oxidation by the
[2Fe–2S] complex is proximal to the trans membrane
F and G a-helices, as seen in the structure of the b6f

http://rstb.royalsocietypublishing.org/
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complex. The niche unoccupied by the H-helix that is
lost from the bc1 complex also spans the complex and
the membrane at this site. This niche could be occupied
by a trans membrane helical domain documented for
the LHCII kinase (stt7) of C. reinhardtii (J.-D. Rochaix
2012, personal communication). However, along with
four other proteins that have been found in isolated b6f
complex [7] before crystallization, the stt7 LHCII
protein kinase is not present in the crystals of the com-
plex. It is presumed that such proteins are peripherally
or loosely bound, which should not be the case for a
subunit with a TMH. Alternatively, conformational
changes associated with trans membrane signalling
could be mediated by the intercalated lipid observed
in the structure of the b6f complex (PDB 2E74
[4,25]), perhaps coupled to the conformational flexi-
bility of the chlorophyll a phytyl chain that is inferred
from the different positions of this chain in the struc-
tures of the complex from the cyanobacteria (PDB
2E74) and C. reinhardtii (PDB 1Q90).

A caveat for the inference of a first appearance of an
LHC kinase in cyanobacteria during the course of
evolution is that cyanobacteria do not display the
state transitions characteristic of algae and higher
plants that are associated with the function of the
light-harvesting chlorophyll proteins in regulating the
distribution of light energy to the two photosystems.
However, a functionally similar regulatory mechanism
Phil. Trans. R. Soc. B (2012)
has been proposed for cyanobacteria [46,47], in which
phosphorylation of the phycobiliproteins has been
implicated [46]. Other redox-linked functions that
have been proposed to be coupled to the redox state
of the plastoquinone pool, and thereby quinol oxi-
dation by the [2Fe–2S] Rieske protein, are
chloroplast [48] and nuclear [49] gene expression,
and other sensing functions [49].
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