Research

Long-term responses of rainforest erosional systems at different spatial scales to selective logging and climatic change

1Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
2School of Science and Technology, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
3School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
4Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
5School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
6School of Environment and Development, University of Manchester, Oxford Road, Manchester M13 9PL, UK
7Department of Surveying, Science and Geomatics, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia

Long-term (21–30 years) erosional responses of rainforest terrain in the Upper Segama catchment, Sabah, to selective logging are assessed at slope, small and large catchment scales. In the 0.44 km² Baru catchment, slope erosion measurements over 1990–2010 and sediment fingerprinting indicate that sediment sources 21 years after logging in 1989 are mainly road-linked, including fresh landslips and gullying of scars and toe deposits of 1994–1996 landslides. Analysis and modelling of 5–15 min stream-suspended sediment and discharge data demonstrate a reduction in storm-sediment response between 1996 and 2009, but not yet to pre-logging levels. An unmixing model using bed-sediment geochemical data indicates that 49 per cent of the 216 t km⁻² a⁻¹ 2009 sediment yield comes from 10 per cent of its area affected by road-linked landslides. Fallout 210Pb and 137Cs values from a lateral bench core indicate that sedimentation rates in the 721 km² Upper Segama catchment less than doubled with initially highly selective, low-slope logging in the 1980s, but rose 7–13 times when steep terrain was logged in 1992–1993 and 1999–2000. The need to keep steeplands under forest is emphasized if landsliding associated with current and predicted rises in extreme rainstorm magnitude-frequency is to be reduced in scale.

Keywords: erosion; sediment transport; rainforest logging; sediment fingerprinting; radionuclides; data-based mechanistic modelling

1. INTRODUCTION

Although it is well established that rainforest logging results in enhanced slope erosion and catchment sediment yields during and following logging [1,2], less is known about long-term recovery, downstream impacts in larger catchments, and the possible effects of current and predicted future climatic change. These issues constitute the principal foci of this paper, which draws upon evidence from long-term studies in the Segama river basin in eastern Sabah in Malaysian Borneo (figure 1). Previous papers established the complex nature (figure 2) of the erosional response from 1988 to 2003 for selective logging of the small (0.44 km²) Baru catchment. The recovery was punctuated by extreme events, including a secondary peak in 1994–1997 linked to the biogenic decay of logs in road bridges, culverts and stream debris dams, and a spatial switch in sediment sources to landslides and their scars and deposits along a mid-slope-aligned logging road [3–8]. Against this background, four interlinked questions are addressed. How close are slope erosion rates, sediment yields and responses to rainstorms of the small Baru catchment to pre-logging levels 21 years after a single cycle of selective logging? What is the nature of the response of the large (721 km²) Upper Segama catchment to episodes of upstream rotational selective logging over the last 30 years? What are the likely consequences of predicted changes in climate on erosion and sediment fluxes.

* Author for correspondence (r.p.d.walsh@swansea.ac.uk).

One contribution of 16 to a Theme Issue ‘The future of South East Asian rainforests in a changing landscape and climate’.

Ph. Trans. R. Soc. B (2011) 366, 3340–3353

3340 This journal is © 2011 The Royal Society
Figure 1. Location maps. (a) The Upper Segama catchment. (b) Location of catchments and erosion bridge sites (W, RR, SS and P) in the Danum area. (c) The Baru catchment. Letters P to U on the map are current sediment source sites mentioned in the text. DVCA, Danum Valley Conservation Area.
across these scales? What messages are there for land management and international policies for reducing impacts of future climatic change? The paper draws upon (i) results of long-term monitoring (over a period of 20–25 years) of slope erosion and river sediment transport, (ii) comparisons of parametrization of suspended sediment/discharge models developed at different stages in catchment recovery using data for 1996 and 2009, (iii) the application of sediment fingerprinting and sediment history approaches, and (iv) evidence for recent climatic change and its effects.

2. STUDY AREA

The study area comprises the forested Upper Segama river catchment in eastern Sabah (figure 1a), focusing particularly on the area close to Danum Valley Field Centre (figure 1b). The climate of the area recorded at Danum Valley Field Centre daily since mid-1985 (table 1) is equatorial, but with seasonal wind changes brought about by the Indo-Australian Monsoon System. The northeast monsoon from November to March and the southwest monsoon from June to August are separated by transitional periods in April–May and September–October. Mean annual temperature is 26.9°C with an annual range of 1.7°C. The mean annual rainfall is 2849 mm (s.d. 451 mm), with monthly means ranging from 315 mm in January to 156 mm in April. Daily rainfalls of 50 mm or greater occur on average 9.0 times per annum. Of the 22 daily rainfalls exceeding 100 mm in the period 1985–2010, 14 occurred in December, January and February. The highest recorded daily falls are 182.2 mm (9 February 2006), 177.2 mm (27 March 1988) and 162.5 mm (19 January 1996).

The geology of the Upper Segama is complex. The Miocene Kuamut Formation (a melange of slumped sedimentary and volcanic rocks with interbedded sandstones, mudstones and tuffs, known collectively as slump breccia) is dominant close to Danum, but older Chert–Spilite formation and metamorphic and igneous gabbro, diorite and granite rocks of the Lower Triassic Crystalline Basement are prevalent in the mountainous headwaters [9]. Altitude varies from approximately 100–1200 m.a.s.l. Slope angles close to Danum are generally 10–30° but are 30–50° on the higher hills and in the Segama headwaters. The topography is finely dissected with a drainage density of 20–22 km km⁻² [3]. Soils are mostly USDA (United States Department of Agriculture) Ultisols. In the Baru and West catchments, loams and silt-loams are dominant [10], but sandy loams are characteristic of steeper slope sites in the primary forest [8]. Soils are generally at least 1.5 m deep and often much deeper.

Apart from the primary lowland dipterocarp forest of Danum Valley Conservation Area and the Palum Tambun catchment immediately south of the Field Centre and some montane forest in the higher mountains, the area comprises regenerating forest that has been rotationally selectively logged in annual coupes since the early 1980s. Commercial tractor and highlead logging techniques have been generally used, with a combination of the two employed when the Baru catchment was logged in 1988–1989, but Reduced Impact Logging (RIL) protocols were employed experimentally in part of the 1992–1993 coupes [11] and have since been adopted as policy. The history of logging and land-use change within the area, together with the logging practices, is covered in more detail by Reynolds et al. [12].

3. METHODS

(a) Measurement of slope erosion

Long-term changes in slope erosion rate and at channel cross-sections are assessed mainly using the

Figure 2. Changes in sediment sources and sediment yield of the Baru catchment since logging commenced in late 1988 (modified after Walsh et al. [3]).

<table>
<thead>
<tr>
<th>climatic element</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean temperature (°C)</td>
<td>26.0</td>
<td>26.1</td>
<td>26.8</td>
<td>27.7</td>
<td>27.7</td>
<td>27.3</td>
<td>27.0</td>
<td>27.0</td>
<td>27.1</td>
<td>27.0</td>
<td>26.9</td>
<td>26.5</td>
<td>26.9</td>
</tr>
<tr>
<td>mean rainfall (mm)</td>
<td>315</td>
<td>233</td>
<td>207</td>
<td>156</td>
<td>260</td>
<td>231</td>
<td>203</td>
<td>188</td>
<td>219</td>
<td>294</td>
<td>261</td>
<td>282</td>
<td>2849</td>
</tr>
<tr>
<td>s.d. of rainfall (mm)</td>
<td>127</td>
<td>154</td>
<td>116</td>
<td>105</td>
<td>118</td>
<td>92</td>
<td>67</td>
<td>69</td>
<td>96</td>
<td>103</td>
<td>90</td>
<td>118</td>
<td>451</td>
</tr>
<tr>
<td>months with <100 mm rain</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>days with ≥50 mm</td>
<td>1.4</td>
<td>0.8</td>
<td>0.4</td>
<td>0.5</td>
<td>0.9</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>9.0</td>
</tr>
<tr>
<td>maximum recorded in a day (mm)</td>
<td>162.5</td>
<td>182.2</td>
<td>177.2</td>
<td>122.5</td>
<td>95.2</td>
<td>109.4</td>
<td>115.6</td>
<td>77.1</td>
<td>124.3</td>
<td>114.0</td>
<td>116.0</td>
<td>119.5</td>
<td>182.2</td>
</tr>
</tbody>
</table>

(b) Measurement of rainfall, catchment flows and suspended sediment

Daily rainfall totals and rainfall intensities have been recorded at Danum Valley Field Centre since August 1985 using a standard rainfall gauge and a Casella natural siphon autographic gauge, respectively. In the Baru catchment, tipping-bucket rainfall gauges linked to data loggers have provided additional information. Streamflow (via calibrated stage monitoring) and suspended sediment concentration (SSC) have been measured at the selectively logged Baru catchment and the primary forest West (W8S5) catchment since mid-1988 and at the Segama at Danum since 1985 (figure 1). Early instrumentation is described by Douglas et al. [4]. In July 1995, these observations were complemented by turbidity monitoring at 10 s intervals using a Partech IR15C probe, where data were typically integrated over 5 min periods for further analysis [6,7]. In 2003, the catchment network was equipped with Campbell data-logging systems, with Analite-195 turbidity sensors (with integral wipers), conductivity/temperature probes and pressure transducers providing 1 min data integrated to 15 min intervals on turbidity, conductivity, water temperature and river stage. The equation $SSC (mg l^{-1}) = 0.6714 T$ (nephelometric turbidity units, NTUs), obtained by analysing representative water samples for SSC using the gravimetric method, is used to convert turbidity to SSC. The data generated are used to assess and model changes in suspended sediment characteristics and dynamics through post-logging time.

(c) Data-based mechanistic modelling of stream sediment dynamics

A data-based mechanistic (DBM) modelling approach was used to assess changes in the dynamics of the suspended sediment system of the small Baru catchment between 6.5 and 19.5 years after selective logging ceased in June 1989. The first period lies in the secondary pulse of sediment immediately following the ca 8 year return period rainstorm of 19 January 1996 (177 mm in the Baru; 162.5 mm at Danum Valley Field Centre), where the event resulted in a major debris flow and nine smaller road-linked landslides in the east of the catchment (figure 1c), debris dam bursts and very high sediment loads [3,6]. The DBM modelling seeks to assess objectively the degree of recovery in the sediment load–discharge relationship between this first period and 13 years later. (The lack of sufficiently high-resolution turbidity data prior to 1995 precluded modelling of, and comparisons with, pre- and early post-logging times.)

DBM modelling methodology is essentially an interactive process of model development and evaluation and in this study involved the following steps:

— Selection of periods with very high quality discharge and suspended sediment load data. Twelve days of 5 min resolution records in February 1996 and 26 days in April 1996 were selected from the period 6.5 years post-logging; 11 days of 15 min records in January 2009 and 30 days in March 2009 were selected to represent the period 19.5 years post-logging. High temporal resolution of the data is essential because of the very flashy nature of suspended sediment responses of tropical streams.

— Identification of a range of DBM model structures that describe relationships between suspended sediment load and discharge time-series. With the DBM philosophy, no assumptions are made about the physical processes prior to modelling. Instead, a wide range of dynamic relationships between the output time-series (suspended
sediment load) and potential controlling time-series (stream discharge) are applied. Transfer functions are one of the commonly used mathematical tools to describe these relationships, but other methods are also used.

- **Evaluation** of the performance of the resultant models using a range of statistical tools and objective criteria [14].
- **Rejection** of model structures that either have a low simulation efficiency or involve too many parameters (which would make the models highly uncertain). Most models are rejected at this stage.
- **Acceptance** of the model structure(s) that is appropriate for all periods and also lends itself to a physical interpretation.
- **Derivation of the dynamic response characteristics (DRCs)** from the model parameters, including estimation of the uncertainty in these by Monte Carlo sampling of 1000 values of the parameters.
- **Assessment and interpretation** of the differences in DRCs obtained when the model is applied to each period.

(d) **Sediment fingerprinting and sedimentation history techniques**

Sediment fingerprinting, which is based on comparisons of sediment properties of downstream transported material with hypothesized upstream sources [15,16], potentially allows one to quantify current (using surface fine-sediment in channels) and/or past (using sediment cores) sources. Hypothesized sources, which may be categorized either spatially (e.g. from different sub-catchments) and/or vertically (e.g. surface, shallow subsurface, deep subsurface material and linked to different processes), must have sediment properties that make them distinguishable from each other. Using a combination of sediment properties makes this easier and such a ‘multi-proxy sediment fingerprinting’ approach is adopted in this paper. An unmixing model can then be used to quantify the relative contributions of sources [16]. Here, some initial results are presented from a survey of current fine bed-sediment at the Baru catchment outlet in relation to upstream tributary bed-sediment and slope source material. After air-drying and sieving, a portable Niton XRF elemental analyser was used to obtain the elemental composition of the less than 63 μm fraction of these samples, representative of the suspended sediment. Although soil aggregates were broken up, care was taken not to crush stone or to grind the samples.

The impact of catchment disturbance on sediment flux is generally reflected in changes in accretion rates of catchment sediment stores, where rates can be determined by radiometric dating using fallout or excess of 210Pb and 137Cs [17]. Sediment cores from floodplain deposits [18–20] and/or lateral channel benches [21] can be used. This study uses the latter approach, as it provides a record from a wider range of high flows than a floodplain site, to explore the history of effects of logging on sediment fluxes for the large (721 km2) Upper Segama catchment. The lateral bench sampled is situated about 6 m above the baseflow river level and 30 m downstream of the suspension bridge at Danum Valley Field Centre (figure 1). A 0.6 m long and 10 cm diameter core was collected and sectioned into 1 cm slices. Each slice was air-dried and homogenized prior to measurement by gamma spectrometry [17]. Activity concentrations of the target radionuclides (210Pb, 226Ra via 214Pb and 137Cs) were measured using a low background EG&G Ortec HPGe gamma spectrometry system at the University of Plymouth Consolidated Radioisotope Facility.

The Constant Rate of Supply model was used to derive an age–depth model for the core and accretion rates following procedures described by Appleby and McKeague [17], where it is assumed that excess 210Pb supply from upstream sediment sources is small in comparison with atmospheric fallout. Because of the incomplete fallout 210Pb profile (see later), the fallout 210Pb inventory at depths below the peak 137Cs activity concentration (assumed to be the 1963 peak in weapon-related fallout) was estimated iteratively against the 137Cs marker.

(e) **Mapping of landslide density and distribution**

Landslides were mapped using photogrammetry and GIS techniques for a 225 km2 area of the Upper Segama catchment around Danum Valley Field Centre covered by vertical aerial photographs of 1995. The area encompassed terrain of contrasting steepness and covered either by primary forest or regenerating forest that had been logged at different times from 1981 to 1993. It included adjacent areas of similarly steep terrain that were selectively logged in 1992 using commercial logging techniques and RIL protocols and left as undisturbed forest. The individual landslide data were aggregated to yield the number and density of landslides for the different parts of the studied area [22].

(f) **Climatic records and analysis**

Recent and historical changes in the frequency of large rainfall events were assessed by analysing the 100 year daily rainfall series at Sandakan, Kota Kinabalu and Tawau (1910–2009) as well as the shorter record at Danum Valley itself (1985–2009). The computerized records of the Malaysian Meteorological Department from 1960 were extended back in time by using daily rainfall data printed each month in issues of the North Borneo Herald from 1906 to 1940 (held at the National Archive at Kew, London) and post-World War II manuscript data found in a storeroom at Kota Kinabalu Airport.

(a) **Slope-scale evidence: erosion bridge transects and 2010 field observations**

Data from erosion bridge sites for different terrain elements of the post-logging mosaic and for undisturbed primary forest for 5 year periods from 1990–1995 to 2005–2010 (table 2) confirm earlier research.
Table 2. Summary of ground lowering rates (mm a\(^{-1}\)) at erosion bridge sites on different terrain elements of the Baru catchment (selectively logged in 1988–1989) and adjacent primary forest for 5 year periods from 1990 to 2010. Positive values indicate ground lowering (through erosion or soil compaction). Negative values indicate ground-level rise (through deposition or soil expansion). The numbers of transect sites and measurement points are given in italics. n.d., no data.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>skid trails</td>
<td>12.92 3–90</td>
<td>0.45 5–155</td>
<td>−3.09 4–128</td>
<td>−5.20 2–74</td>
</tr>
<tr>
<td>unsurfaced roads</td>
<td>62.22 6–162</td>
<td>2.47 10–270</td>
<td>5.19 6–162</td>
<td>15.78 5–135</td>
</tr>
<tr>
<td>heavily disturbed <25(^{\circ})</td>
<td>6.04 11–132</td>
<td>−9.03 19–468</td>
<td>−3.59 18–441</td>
<td>0.70 11–267</td>
</tr>
<tr>
<td>lightly disturbed</td>
<td>n.d.</td>
<td>1.01 10–270</td>
<td>−0.13 9–243</td>
<td>−0.17 7–189</td>
</tr>
<tr>
<td>landslide scars</td>
<td>n.d.</td>
<td>1.41 4–108</td>
<td>1.37 2–54</td>
<td>3.04 2–54</td>
</tr>
<tr>
<td>primary forest <25(^{\circ})</td>
<td>0.48 10–370</td>
<td>0.44 10–370</td>
<td>0.70 14–478</td>
<td>−0.11 14–478</td>
</tr>
<tr>
<td>primary forest >25(^{\circ})</td>
<td>0.16 3–111</td>
<td>0.46 3–111</td>
<td>1.39 13–381</td>
<td>0.56 13–381</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>year</th>
<th>annual rainfall (mm)</th>
<th>rain days >50 mm</th>
<th>>500</th>
<th>>1000</th>
<th>>4000 mg l(^{-1})</th>
<th>hours per annum SSC > 200 mg l(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995–1996</td>
<td>3598</td>
<td>10</td>
<td>30</td>
<td>14</td>
<td>6</td>
<td>162.2</td>
</tr>
<tr>
<td>2003</td>
<td>3539</td>
<td>17</td>
<td>17</td>
<td>10</td>
<td>2</td>
<td>43.3</td>
</tr>
<tr>
<td>2004</td>
<td>3006</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>19.5</td>
</tr>
<tr>
<td>2005</td>
<td>2350</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>10.5</td>
</tr>
<tr>
<td>2009</td>
<td>3421</td>
<td>11</td>
<td>20</td>
<td>7</td>
<td>0</td>
<td>62.8</td>
</tr>
</tbody>
</table>

[3,5,8] showing that initially high rates of erosion on bare ground sites (skid trails, rutted unsurfaced roads and heavily disturbed terrain) fell rapidly with revegetation. After late 1994, the foci of erosion switched to road-linked landslides and their scars and knickpoints along road drainage gullies. This remains the case, with erosion rates in 2005–2010 only being greatly in excess of primary forest values at landslide scar and unsurfaced road sites, where average ground lowering rates were 86.6 and 15.8 mm a\(^{-1}\), respectively. The temporal pattern at low-angle heavily disturbed terrain sites (mostly heavily compacted log-landing sites) is of interest, with initially high ground lowering rates (6.0 mm a\(^{-1}\)) becoming ground-level rises in 1995–2005, but with renewed lowering since 2005. Field observations suggest that this pattern may be related to vegetation. Ground-level rise was recorded when the vegetation comprised a progressively denser ground cover, which protected against splash and slopewash and favoured soil expansion via root development. In the last 5 years, however, vertical growth of the vegetation canopy (1.5–2 m high by 2010) has left more bare ground beneath it, possibly accounting for the increased erosion and return to net ground lowering.

Field observations and measurements in summer 2010 indicate the continued importance of erosional activity linked to the mid-slope section of the main logging road (figure 1c), which was constructed as with the whole road system at the time of logging in 1988–1989. Eroding sites include: a fresh landslip at P; an eroding, collapsing road culvert at Q; continued active gullying of the scar of the 1994 landslide at R (where the gully has deepened by an additional 50 cm in 2005–2010); and further headward erosion, deepening and widening of what is now an 8 m long, 3 m deep, ephemeral waterfall/gorge section at S cut by runoff from an unsurfaced logging road as it cascades down the road embankment towards the pre-existing stream network. There is also active dissection by the 2E Tributary of toe deposits of the 1996 landslide at T. In contrast to earlier post-logging time from 1989 to 2005 [3,23], tributary streams in 2010 were characterized by fewer debris dams and the confluence region at U was free of logging debris and accessible for the first time since logging.

(b) Catchment-integrated evidence: I. suspended sediment responses in storm events

Data at the Main Baru station for 2003–2005 (table 3) indicate a further decline in the size and duration of suspended sediment responses compared with in 1995–1996 during the secondary peak in erosion. Despite similar annual rainfall, all SSC parameters were lower in 2003, despite its greater number of large rainstorms, than in 1995–1996. Responses in 2004 and 2005 were much lower still, reflecting the lower annual rainfalls and reduced large-storm frequencies of those years. Suspended sediment responses in the wet year of 2009, however, differed little from those of 2003 and the suspended sediment yield rose to 215.5 t km\(^{-2}\) a\(^{-1}\), compared with 277.5 t km\(^{-2}\) a\(^{-1}\) in 2003 and 592 5 t km\(^{-2}\) a\(^{-1}\) in 1995–1996.
(c) Catchment-integrated evidence: II. Modelling dynamics of sediment load

The DBM modelling approach provided a more objective way of assessing the change in suspended sediment dynamics (and degree of recovery) of the Baru catchment between 1995–1996 and 2009 than achieved in §4a. The model identification procedures generated a range of model structures relating Baru discharge and suspended sediment load. The most appropriate relationship was found to be a dynamic model that uses both the rate of change of discharge and inertia in the relation and needs to identify only three parameters to capture the short-term dynamics of the relationship. It uses an algorithm based on a continuous-time transfer function that takes the form,

\[
\frac{dy}{dt} = -ay(t) + b_1 \frac{dq(t)}{dt} + b_2 q(t),
\]

where \(\frac{dy}{dt}\) is the rate of change of suspended sediment load (kg (5 min)\(^{-2}\)) or kg (5 min)\(^{-1}\); \(y(t)\) is the suspended sediment load (kg (5 min)\(^{-1}\) or kg (15 min)\(^{-1}\)) at time \(t\); \(q(t)\) is the discharge (litres (5 min)\(^{-1}\) or litres (15 min)\(^{-1}\)) at time \(t\); and \(a, b_1\) and \(b_2\) are the model parameters. Parameter \(a\) captures the inertia of the system; parameter \(b_1\) captures the sensitivity of sediment load to the rate of change of discharge; and parameter \(b_2\) captures the sensitivity of sediment load to the value of discharge. The model structure was identified as the most appropriate using standard DBM model selection criteria. In this case both Young’s Identification Criterion and the multiple correlation coefficient \((R^2)\), equivalent to the simplified Nash–Sutcliffe Efficiency measure) pointed to this particular model structure. The model parameters \((a, b_1, b_2)\) were estimated using the Refined Instrumental Variable method for continuous-time transfer function models [14] as implemented in the Captain Toolbox for MATLAB [24].

This model presented as a transfer function is of the form:

\[
y(s) = \frac{b_1 s + b_2}{s + a} q(s),
\]

where \(s\) is the Laplace derivative operator [25]. The model structure allows the derivation of two key DRCs of the system’s behaviour. First, the time constant of the inertia in the discharge to load system (hours) is then given as,

\[
TC = \frac{1}{a}
\]

and second, the differencing time constant (in hours; related to the rate of change of sediment load in response to the rate of change of discharge) is given as,

\[
T_d = \frac{b_1}{b_2}.
\]

This \(T_d\) parameter defines the linearized balance between the influence of discharge and its time derivative on sediment load. This describes or captures the dynamics reflected in typical clockwise hysteresis loops between discharge and suspended sediment load.

The model was applied to the storm event of 17 February 1996 (figure 3) and to three other sequences of storm events (covering 11–30 days) within the January–April 1996 and January–April 2009 periods (table 4). As the model incorporated the derivative of discharge to predict suspended sediment load, it magnifies any errors in the discharge data and adversely influences model parameter estimates. This fact reinforces the need to select only periods with the highest quality data. The \(R^2\) value obtained for the February 1996 event was 0.93 and similarly high efficiencies were obtained for all the sequences examined. Given the small residuals obtained (figure 3), only slightly improved efficiencies would be obtained by developing a nonlinear model and thus, from the objective of parsimony (minimizing the number of parameters) (§4b).

Figure 3. Example responses of the 0.44 km\(^2\) Baru catchment for a 12 h period covering a storm event on 17 February 1996. (a) Monitored streamflow (solid line) and monitored suspended sediment load (dashed line). (b) Comparison of suspended sediment load simulated with a DBM continuous time model (solid line) with the monitored record (dashed line).
of the differencing time constant (\(T_d\)) do not differ consistently between 1996 and 2009, values of the differencing time constant (\(T_d\)) are consistently smaller in 2009 than in 1996. This implies that the rate of rise in suspended sediment load (and by implication SSCs) with increasing discharge in rising limbs of storm events was measurably reduced in 2009 compared with that in 1996. The larger spread of \(T_d\) values for the February 1996 period (figure 4) is to be expected given the much shorter period of data (12 h) used in parameter estimation than in March 2009 (30 days). The modelling approach therefore confirms, but more objectively than in table 3, that catchment recovery is measurably more advanced in 2009 than it was in 1996.

Parameters in order to reduce predictive uncertainty, it was decided to keep to the linear model. The uncertainty about the TC and \(T_d\) parameter estimates was then quantified using Monte Carlo sampling of 1000 random values from within the standard deviation of the mean values of parameters \(a\), \(b_1\) and \(b_2\).

Although the inertia-related time constants (TC) do not differ consistently between 1996 and 2009, values of the differencing time constant (\(T_d\)) are consistently smaller in 2009 than in 1996. This implies that the rate of rise in suspended sediment load (and by implication SSCs) with increasing discharge in rising limbs of storm events was measurably reduced in 2009 compared with that in 1996. The larger spread of \(T_d\) values for the February 1996 period (figure 4) is to be expected given the much shorter period of data (12 h) used in parameter estimation than in March 2009 (30 days). The modelling approach therefore confirms, but more objectively than in table 3, that catchment recovery is measurably more advanced in 2009 than it was in 1996.

Table 4. Dynamic Response Characteristics (DRCs) of the continuous-time transfer function models between streamflow and suspended sediment load for the Baru catchment in 1996 and 2009. TC is the time constant of the inertial component, \(T_d\) is the differencing time constant, SSG is the steady-state gain of the model (i.e. \(b_2/a\)), and \(R_t^2\) is the model efficiency. Standard deviations (s.d.) are given in brackets.

<table>
<thead>
<tr>
<th>Period</th>
<th>TC (s.d.) (h)</th>
<th>(T_d) (s.d.) (h)</th>
<th>SSG (s.d.) (h)</th>
<th>(R_t^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 years after logging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary peak in erosion following extreme event</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>during February 1996</td>
<td>0.25 (0.01)</td>
<td>1.30 (0.11)</td>
<td>0.44 (0.03)</td>
<td>0.93</td>
</tr>
<tr>
<td>during April 2009</td>
<td>0.86 (0.02)</td>
<td>1.90 (0.03)</td>
<td>0.04 (0.002)</td>
<td>0.93</td>
</tr>
<tr>
<td>twenty-one years after logging</td>
<td>0.17 (0.004)</td>
<td>0.43 (0.01)</td>
<td>0.43 (0.005)</td>
<td>0.89</td>
</tr>
<tr>
<td>during January 2009</td>
<td>0.42 (0.01)</td>
<td>0.95 (0.02)</td>
<td>0.42 (0.01)</td>
<td>0.95</td>
</tr>
</tbody>
</table>

5. Sediment Response to Selective Logging at the Large Catchment Scale: The Upper Segama 1980–2010

(a) The sedimentation record of the Segama river at Danum using fallout \(^{137}\text{Cs}\) and \(^{210}\text{Pb}\)

Activity concentrations of fallout \(^{210}\text{Pb}\) in the lateral bench core of the Segama at Danum (figure 5a) are low relative to the higher concentrations found in mid-latitudes [26]. Assuming that the input of fallout \(^{210}\text{Pb}\) from deposited sediment is low relative to direct fallout, low activity concentrations can be linked to higher rates of sedimentation. The marked troughs in the middle and upper sections of the profile (figure 5a) thus imply marked dilution of activity concentration by periods of enhanced rates of sediment accretion.

Caesium-137 activity concentrations (figure 5b) are also very low and below detection limits in much of the core in line with reportedly low levels of radioactive fallout in equatorial regions following weapons testing [27]. Much higher activity concentrations of \(^{137}\text{Cs}\) were measured at mass depths of 49–54 kg m\(^{-2}\) and the peak (at a mass depth of 52 kg m\(^{-2}\)) is inferred.
to mark the 1963 peak in nuclear bomb testing and associated fallout prior to the implementation of the Test Ban Treaty on 10 October of that year. The inferred 1963 date permitted the fallout ^{210}Pb curve (figure 5a) to be recalibrated (and inverted) to yield a tentative graph of sedimentation rate from ca 1960 to 2007 (figure 5c). The temporal pattern of peaks and troughs points to a modest rise in sedimentation rate in the early 1980s, an intermediate peak in the early 1990s and a marked peak around 2000.

(b) Logging history, landslide occurrence and land management in the Upper Segama

The temporal pattern of sedimentation (figure 5c) fits with the known history of logging in the Upper
Segama. The early logging phase in the 1980s was largely confined to low-angle terrain and was very selective, with only lighter timbers being extracted, as logging roads did not reach the area and logs were floated down the river (W. Sinun 2010, personal communication). The intermediate peak tallies in timing with logging of steeper terrain in the 1992–1993 logging practices and only a small section under RIL no logging is permitted on slope segments exceeding 25°. The variation in landslide density with terrain steepness is also clear, with a low density of 0.09 m² km⁻² found in the low-slope 1983 commercially logged coupe. The peaks in sedimentation rate in 1992–1993 and 1999–2001 recorded at the Segama core at Danum are probably in part the product of enhanced landsliding.

6. EROSIONAL IMPACTS OF CURRENT AND FUTURE CLIMATIC CHANGE
(a) Predicted and recent actual climatic change in Sabah

The main IPCC predictions (A1B scenario) for future climate of northern Borneo by 2080–2099 compared with 1980–1999 are for a 5–10% increase in annual rainfall, an increase in the frequency and size of extreme rainstorm events and a 3.3 °C increase in annual temperature (lower than the global average reflecting the offsetting effect of increased rainfall and cloudiness) [28]. There is greater uncertainty about the future severity and frequency of El Niño–Southern Oscillation events, which tend to lead to dry periods in eastern Borneo.

The recent climatic record for long-term meteorological stations in northern Borneo and at the Danum Valley Field Centre appears to reflect some of these predictions. At Danum Valley Field Centre, the 5 year running mean of annual temperature has risen by 0.5 °C from 26.7 °C in 1986–1990 to 27.2 °C in 2006–2010, with the highest annual mean of 27.6 °C recorded in 2010 (figure 6). At Kota Kinabalu, the 5 year mean has risen by 0.8 °C from 26.4 °C in 1968–1972 to 27.3 °C–27.5 °C since 1990, though some of the increase might be due to expansion of the airport and urbanization. Long-term daily records at Sandakan and Tawau extending back to 1906 indicate a recent upswing in large rainstorms compared with 1947–1979, though frequencies had been almost as high in 1906–1940 (table 8). The upswing has intensified since 1999. Trends in the size of daily rainfalls of different return period vary, however, including between locations; thus at Sandakan, daily rainfalls of 1–2 year return period have increased, but more extreme rainfalls of 5 and 10 year return period have...
actually fallen since 1980, whereas at Tawau daily rainfalls from 1 to 10 year return period have all risen [29]. At Danum, annual rainfall in the years 1999–2010 was 14 per cent higher than in the years 1985–1998 and the frequencies of large daily rainfalls in excess of 50, 80 and 100 mm thresholds have shown substantial increases (table 9). There has also been an increase in dry period magnitude-frequency in Sabah since 1967, though the period 1877–1915 was equally drought-prone [30].

Likely erosional impacts of climatic change

Uncertainties about the scale and nature of predicted climatic change—and about future land-use and land-management changes—preclude precise statements about hydrological and erosional impacts. Likely effects in the tropical rainforest zone as a whole have been considered in some detail elsewhere [29]. Of key significance would be the predicted increase in the magnitude-frequency of large rainstorms, which, if substantial, should result in (i) a major landsliding phase in areas of moderate and steep terrain, (ii) enhanced slopewash and pipe erosion, (iii) increased river bedloads and suspended sediment loads, (iv) increased flood frequency, and (v) increases in size, width–depth ratios and degree of shifting of river channels; effects would be greatly enhanced in agricultural and urban areas and in logged terrain where RIL protocols had not been followed.

Long-term monitoring at Danum supports some of these predicted impacts. Mean slopewash rates at 13 erosion bridge transects installed at primary forest sites in 1990 were over three times as high in the wetter 1998–2010 period (0.87 mm a⁻¹) than they had been in 1990–1998 (0.24 mm a⁻¹; table 9). As slopewash erosion at the sites is concentrated into years with very large daily rainfalls [5], the increase since 1998 may be linked to the increase in frequency of daily falls greater than 80 mm. Likewise, the sediment load of both primary and logged forest streams is disproportionately carried in the largest storm events [5,23]. Also differences in frequency of large rainstorms largely explain the major differences in sediment transport in the Baru stream between years 2003–2009 on the one hand and 2004–2005 on the other hand, as shown in table 3. Using models parametrized with current data (as in table 4) to predict sediment loads of a wetter and/or more storm-prone future may be inappropriate (except as a first estimate), however, as transport is also a function of sediment availability and supply to the stream network; the onset of a landsliding phase could well lead to a big increase in sediment supply and hence a much larger increase in load than models based on current data would suggest. Also increased fire frequency, resulting from either increased drought frequency or higher fuel loads and fire risks of a logged, fragmented forest, would lead to additional erosional episodes, as demonstrated in similar rainforest elsewhere in Sabah [31].

7. CONCLUSIONS AND POLICY MESSAGES

(i) Although the long-term monitoring and modelling results demonstrate that suspended sediment responses and erosion rates are significantly
Phil. Trans. R. Soc. B (2011)

Table 8. Changes in the frequency of large daily rainfalls of different threshold values at Sandakan and Tawau 1906–2010.

<table>
<thead>
<tr>
<th>Period</th>
<th>50 mm</th>
<th>100 mm</th>
<th>Mean annual rainfall (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandakan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1906–1940</td>
<td>16.2</td>
<td>3.3</td>
<td>3186</td>
</tr>
<tr>
<td>1952–1979</td>
<td>14.8</td>
<td>2.4</td>
<td>3040</td>
</tr>
<tr>
<td>1980–2010</td>
<td>16.0</td>
<td>3.2</td>
<td>3057</td>
</tr>
<tr>
<td>1999–2010</td>
<td>17.3</td>
<td>4.3</td>
<td>3303</td>
</tr>
<tr>
<td>Tawau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1906–1940</td>
<td>5.8</td>
<td>0.6</td>
<td>1887</td>
</tr>
<tr>
<td>1951–1979</td>
<td>4.6</td>
<td>0.3</td>
<td>1744</td>
</tr>
<tr>
<td>1980–2010</td>
<td>6.1</td>
<td>0.4</td>
<td>1919</td>
</tr>
<tr>
<td>1999–2010</td>
<td>6.6</td>
<td>0.7</td>
<td>2003</td>
</tr>
</tbody>
</table>

Table 9. The recent rise in annual rainfall and the frequency of large daily rainfalls and a parallel rise in mean slopewash rates at long-term erosion bridge transects sites in primary forest at Danum. Rainfall periods are calendar years. Slopewash periods are June 1990–July 1999 and July 1999–April 2010; the number of erosion bridge sites = 13; the number of measuring points = 37 per transect = 481; mean slope = 15.8° (range: 6°–31°).

<table>
<thead>
<tr>
<th>Period</th>
<th>Mean annual rainfall (mm)</th>
<th>Annual frequency of daily rainfalls</th>
<th>Mean annual mean slopewash erosion rate (mm per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985–1998</td>
<td>2664</td>
<td>>50</td>
<td>7.78 1.85 0.81 0.24</td>
</tr>
<tr>
<td>1999–2010</td>
<td>3049</td>
<td>>80</td>
<td>10.42 2.58 0.91 0.87</td>
</tr>
<tr>
<td>Change (%)</td>
<td>+14</td>
<td>>100</td>
<td>+33 +40 +13 +248</td>
</tr>
</tbody>
</table>

Reduced from 1995 to 1996 levels, the Baru catchment is not fully recovered 21 years after selective logging ceased in mid-1989. Although runoff from roads and skid trails can remain enhanced after 40 years [32], previous research at Danum [5] and elsewhere in southeast Asia [33–35] has demonstrated the dual, but short-term (less than 4 years) to medium-term (5–12 years post-logging) roles of logging roads in generating sources of sediment via road runoff or through causing landslides. Also enhanced slopewash rates on landslide scars in primary forest terrain in Puerto Rico lasted only 2 years after a landslide before revegetation reduced rates to pre-landslide levels [36]. This research, however, shows that (i) landslide scars and toe deposits can remain as important sources of sediment 14–16 years after landslides have occurred, and (ii) fresh landslips can be instigated along a mid-slope-oriented logging road 19 years after logging ceased—and hence that geomorphological effects can continue long after revegetation has occurred.

There may be considerable potential for applying fallout radionuclide dating, which has been used with success in Pacific islands closer to nuclear testing sites [37,38], and sediment fingerprinting techniques more widely in humid tropical environments. Despite the low fallout 137Cs activity concentrations, the 1963 peak was still apparent in the Segama bench core and allowed time calibration of the 210Pb record and the reconstruction of a curve of sedimentation rates for the upper Segama spanning the logging period. Likewise, the multi-proxy sediment fingerprinting approach appears to have been effective at the small-catchment scale in indicating from which tributary sub-catchments current sediment is being derived. Combining these approaches may prove more difficult at a large catchment scale because of (i) sediment storages and delays between upstream tributaries and downstream floodplain locations and (ii) possible changes in elemental signatures of the bed-sediment of individual tributary catchments through time, particularly with enhanced landslide activity (and subsoil and weathered rock inputs) during logging phases [39].

(iii) Enhanced landsliding, which has major ramifications for the fluvial system downstream, is considered the main danger of predicted climatic change in the region, not only because of its link to any increase in the magnitude-frequency of large rainstorms, but because landslide frequency is sensitive to forest disturbance and land-use change. The analysis of long-term daily rainfall series for Sabah suggests that some categories of large rainstorm may be already increasing in frequency.

(iv) Impacts of both climatic change and human activities in the region can be reduced greatly if land-use and land-management strategies are followed. The landslide density data presented in this paper show that strict adherence to RIL (in which slopes above 25° are left unlogged) largely avoids causing landslides. Keeping all slopes above 25° under forest would be a wise land-use strategy as are current moves by some plantation companies to abandon cultivation of such slopes and allow forest regeneration.

The authors thank Jamil Hanapi and others for their help in the fieldwork; Nicola Jones and Anna Ratcliffe for drawing the diagrams and maps; and Danum Valley Management Committee, the Economic Planning Unit of the Prime Minister’s Department of Malaysia and the Sabah Chief Minister’s Department for permission to carry out research at Danum Valley; the Royal Society, the Natural Environment Research Council, The Royal Geographical Society and the Earthwatch Institute for providing grants to support the fieldwork; and the C3W Grant for providing funds for the portable XRF analyser equipment. This paper constitutes Publication no. A/584 of the Royal Society South East Asia Rainforest Research Programme.

REFERENCES

