Central neural coding of sky polarization in insects

Uwe Homberg1,*, Stanley Heinze1,†, Keram Pfeiffer1,‡, Michiyo Kinoshita2 and Basil el Jundi1

1 Department of Biology, Animal Physiology, University of Marburg, 35032 Marburg, Germany
2 Laboratory of Neuroethology, Sokendai-Hayama (Graduate University for Advanced Studies), Hayama, Japan

Many animals rely on a sun compass for spatial orientation and long-range navigation. In addition to the Sun, insects also exploit the polarization pattern and chromatic gradient of the sky for estimating navigational directions. Analysis of polarization-vision pathways in locusts and crickets has shed first light on brain areas involved in sky compass orientation. Detection of sky polarization relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Brain areas involved in polarization processing include parts of the lamina, medulla and lobula of the optic lobe and, in the central brain, the anterior optic tubercle, the lateral accessory lobe and the central complex. In the optic lobe, polarization sensitivity and contrast are enhanced through convergence and opponency. In the anterior optic tubercle, polarized-light signals are integrated with information on the chromatic contrast of the sky. Tubercle neurons combine responses to the UV/green contrast and e-vector orientation of the sky and compensate for diurnal changes of the celestial polarization pattern associated with changes in solar elevation. In the central complex, a topographic representation of e-vector tunings underlies the columnar organization and suggests that this brain area serves as an internal compass coding for spatial directions.

Keywords: polarization vision; insect brain; e-vector map; central complex; compass navigation; locust

1. INTRODUCTION
Insect photoreceptor cells are inherently sensitive to polarized light owing to high alignment of rhodopsin in microvillar membranes. Photon absorption is maximal for light with an e-vector parallel to the microvillar axis [1]. Because polarization sensitivity interferes with the perception of colour and brightness, it is reduced or actively suppressed in most parts of the eye by rhodomeric twist or misalignment of microvillar orientation along the rhabdomere [1–3]. In many insect species, however, including locusts, crickets, ants, bees, butterflies and beetles, ommatidia in a small dorsal margin of the compound eye, termed dorsal rim area (DRA), are particularly adapted for small dorsal margin of the compound eye, termed

This journal is © 2011 The Royal Society
2. THE INPUT STAGE: POLARIZATION-SENSITIVE PHOTORECEPTORS IN THE DORSAL RIM AREA

A DRA specialized for high polarization sensitivity has been demonstrated in the compound eye of a variety of insect species [1]. The DRA faces the sky, and its ommatidia have optical axes directed upwards and slightly contralaterally. Microvilli of DRA photoreceptor cells are highly aligned in parallel, and self-screening is reduced, particularly in open rhabdoms, by the short length of the rhabdomers [2,14]. Visual fields of DRA photoreceptors may be increased (to about 20° in crickets) by degraded optics, reduction or lack of screening pigment between adjacent ommatidia, and by enlarged cross-sectional area of the rhabdoms [1]. Taken together, these measures result in high polarization-sensitivity (PS) values ranging from 5 to 15 [3]. Two blocks of photoreceptor cells with orthogonal microvillar orientations occur in each ommatidium, representing a set of crossed e-vector analysers (figure 1b). To avoid interference with colour vision, the two sets of photoreceptor cells within each ommatidium are homochromatic with maximum sensitivity in the UV (honeybee, desert ant, monarch butterfly), blue (locust, cricket) or green (cockchafer) range [1,15]. Across the DRA, microvillar orientations of ommatidia vary systematically, in many species in a fan-like pattern, following the geometrical layout of the ommatidial lattice ([3,16]; figure 1b).

3. POLARIZATION-VISION PATHWAYS IN THE BRAIN OF ORTHOPTEROID INSECTS

DRA photoreceptors project to DRAs in the lamina and medulla of the optic lobe [17,18]. Studies in crickets showed that photoreceptor axons from R1, R2, R5 and R6 with parallel microvilli terminate in the lamina, while the axons from R7 receptor cells, with microvilli orientation orthogonal to those of R1, R2, R5 and R6, project to the medulla [17]. Lamina-to-medulla interneurons have not been characterized in any insect, but medulla tangential neurons with dendritic branches in the dorsal rim of the medulla have been studied in detail in the field cricket (figure 2a). These neurons, termed POL1, interconnect the right and left medulla and have side branches in the accessory medulla [3,19]. Tracer injections in locusts revealed a polarization-vision pathway from the DRA of the medulla to the central brain (figure 3). Medulla line tangential neurons with ramifications in the DRA of the medulla send axonal projections through the anterior lobe of...
Polarization-sensitive (POL) interneurons in the optic lobe have been characterized in ants, cockroaches and locusts (reviewed in [5]), but most detailed studies exist on an identified type of interneuron in crickets, termed POL1 [13,19]. POL1 neurons are commissural neurons with ipsilateral ramifications in the dorsal medulla and an axon projecting to the contralateral medulla (figure 2a). When a linear polarizer is rotated above the animal, POL1 shows polarization opponency, i.e. the neuron is maximally excited by a particular e-vector orientation, termed Φ_{max} and is maximally inhibited by an e-vector orientation orthogonal to Φ_{max} (figure 2b). POL1 neurons, therefore, receive antagonistic input from crossed e-vector analysers in the compound eye, which may be represented by the two sets of photoreceptor cells with orthogonal microvilli orientation in each DRA ommatidium. Polarization opponency is a common property of POL neurons in the insect brain and has been found in other optic-lobe neurons, in the anterior optic tubercle and the central complex (see below). Polarization opponency greatly enhances e-vector contrast and makes POL1 neurons virtually unresponsive to changes in ambient light levels [19,26]. Spatial integration of input from about one-third of all ipsilateral DRA ommatidia [17] results in large receptive fields of about 60° in diameter (figure 2c) and an extremely high absolute sensitivity [19]. As a further consequence, the neurons respond to the mean e-vector orientation in their receptive field rather than to details of celestial e-vector distribution. Therefore, POL1 neurons still signal e-vector orientation down to a degree of polarization of about 5 per cent, which matches the behavioural performance of the animals [27]. POL1 neurons occur as triplets, since three physiological subtypes have been encountered with Φ_{max} orientations around 10°, 60° and 130° ([13]; figure 2d). The different activity levels in the three POL1 subtypes would allow the cricket to instantaneously extract unambiguous information on mean e-vector orientation of the stimulus.

4. POLARIZATION SENSITIVE NEURONS IN THE OPTIC LOBE: SENSITIVITY ENHANCEMENT THROUGH CONVERGENCE AND POLARIZATION OPPONENCY

Polarization-sensitive (POL) interneurons in the optic lobe have been characterized in ants, cockroaches and locusts (reviewed in [5]), but most detailed studies exist on an identified type of interneuron in crickets, termed POL1 [13,19]. POL1 neurons are commissural neurons with ipsilateral ramifications in the dorsal medulla and an axon projecting to the contralateral medulla (figure 2a). When a linear polarizer is rotated above the animal, POL1 shows polarization opponency, i.e. the neuron is maximally excited by a particular e-vector orientation, termed Φ_{max} and is maximally inhibited by an e-vector orientation orthogonal to Φ_{max} (figure 2b). POL1 neurons, therefore, receive antagonistic input from crossed e-vector analysers in the compound eye, which may be represented by the two sets of photoreceptor cells with orthogonal microvilli orientation in each DRA ommatidium. Polarization opponency is a common property of POL neurons in the insect brain and has been found in other optic-lobe neurons, in the anterior optic tubercle and the central complex (see below). Polarization opponency greatly enhances e-vector contrast and makes POL1 neurons virtually unresponsive to changes in ambient light levels [19,26]. Spatial integration of input from about one-third of all ipsilateral DRA ommatidia [17] results in large receptive fields of about 60° in diameter (figure 2c) and an extremely high absolute sensitivity [19]. As a further consequence, the neurons respond to the mean e-vector orientation in their receptive field rather than to details of celestial e-vector distribution. Therefore, POL1 neurons still signal e-vector orientation down to a degree of polarization of about 5 per cent, which matches the behavioural performance of the animals [27]. POL1 neurons occur as triplets, since three physiological subtypes have been encountered with Φ_{max} orientations around 10°, 60° and 130° ([13]; figure 2d). The different activity levels in the three POL1 subtypes would allow the cricket to instantaneously extract unambiguous information on mean e-vector orientation of the stimulus.
5. INTEGRATION OF CELESTIAL CUES IN THE ANTERIOR OPTIC TUBERCLE

Perception of e-vector orientation in a patch of blue sky does not provide unambiguous information on solar azimuth and, therefore, on navigational directions because it does not allow the animal to distinguish the solar from the anti-solar hemisphere of the sky (figure 1a). Moreover, outside the solar meridian, orientation of polarization changes with changing Solar elevation during the day. Neurons of the anterior optic tubercle in the brain of the locust show response characteristics that may be suited to overcome both problems. As in other insect species, the anterior optic tubercle of the locust consists of a large upper unit and a smaller lower subunit (figure 4a,b). Intracellular recordings showed that all neurons encountered in the lower subunit are polarization sensitive [28]. These include two types of heterolateral interneurons, termed LoTu1 and TuTu1, that connect the lower subunits of both brain hemispheres (figure 4) and two types of projection neurons that connect the lower unit to the next stages of processing, the median olive and lateral triangle of the LAL of the midbrain [28]. LoTu1 and TuTu1 have been studied most extensively. As in cricket POL1 neurons, their spiking activity is sinusoidally modulated with changing e-vector orientation, and their responses are dominated by input from the ipsilateral eye (figure 4g). Like DRA photoreceptors, LoTu1 and TuTu1 are most sensitive to polarized blue (approx. 450 nm) light [29]. In contrast to the cricket POL1 neurons, however, both neurons also show wavelength-dependent responses to unpolarized light [29]. Responses to a long wavelength (green) and a short wavelength (UV) light spot depend on stimulus azimuth (figure 4d,e) and show spectral opponency combined with spatial opponency (e.g. excitation versus inhibition to a UV light from opposite directions; figure 4e). These chromatic properties are suited to distinguish the solar half of the sky from the anti-solar half, by its higher content of long-wavelength light. The difference angles between spatial tuning to polarized light and to the green light spot are large in experiments performed in the late afternoon but small at noon, when the Sun is high in the sky (figure 4f). These changes reflect changes in celestial e-vector orientation that occur with changing solar elevation during the day and are matched particularly well by a model curve taken from the geographical coordinates of northern Africa, the natural habitat of the animals (figure 4f). Therefore, TuTu1 and LoTu1 (i) combine responses to the UV/green contrast and polarization contrast of the sky for a robust compass signal and (ii) compensate for diurnal changes in celestial e-vector orientation owing to changes in solar elevation [30]. They are, thus, suited to code solar azimuth independently of time of day.

6. COMPASS-LIKE REPRESENTATION OF CELESTIAL e-VECTORS IN THE CENTRAL COMPLEX

Projection neurons from the anterior optic tubercle provide input to the central-complex network via specialized regions in the LALs (figure 3). The central complex consists of the protocerebral bridge (PB) and the upper and lower divisions of the central body (CBL and CBU, figures 5a and 6). All subunits are arranged in linear rows of 16 columns and both subdivisions of the central body consist of several layers. Single-cell recordings in locusts and matching data in crickets showed that 13 types of central-complex neurons are sensitive to polarized light. Based on anatomical and physiological evidence, the resulting polarization–vision network can be divided into several processing stages ([23,24]; figures 5 and 6). At the input stage, tangential neurons carry polarized-light information from specialized regions of the LAL to specific layers of the CBL ([25,31];...
At an intermediate stage, CL1 neurons with arborizations restricted to single columns (columnar neurons) are likely to provide a link between the CBL and the PB ([23]; figure 6). Finally, at the output stage, TB1 tangential neurons of the PB appear to integrate polarized-light information from several CL1 columnar cells across both hemispheres (figure 6). Via unknown mechanisms, this results in the generation of a compass-like representation of zenithal e-vectors in the columnar output arborizations of these tangential cells, covering roughly $2 \times 180^\circ$ along the 16 columns of the PB. Hence, activity in the columns of the PB is correlated to the orientation of the locust with respect to solar azimuth ([22]; figures 5b and 6). Finally, different sets of columnar neurons (types CP1, CP2 and CPU1) provide the output from the central complex. These cells participate in the azimuthal e-vector representation in the PB columns and probably receive input from PB-tangential cells (figure 5c), while ultimately projecting to several regions of the LAL [22]. These neurons are anatomically suited to combine azimuthal e-vector information from the PB with information present in the CBU to provide an integrated output signal from the central complex (figure 6).

All polarization-sensitive neurons of the central complex share polarization opponency with neurons at the more peripheral processing stages. In contrast to neurons of the anterior optic tubercle, most central-complex neurons integrate information from both eyes (except TL3 input stage neurons). Within the central complex, physiological properties are successively altered from one processing stage to the next [24]. Hereby, initially eccentric and comparably

Figure 4. Polarization-sensitive neurons of the anterior optic tubercle in the locust brain. (a,b) Morphology of two types of polarization-sensitive commissural neurons, termed LoTu1 and TuTu1, that connect the lower units of the anterior optic tubercles (AOTu-UU) of both hemispheres. LoTu1 has additional ramifications in the ventralmost layer 1 of the anterior lobe of the lobula (ALo) of both hemispheres. AOT, anterior optic tract; CB, central body; MB, mushroom body; AOTu-UU, upper unit of the anterior optic tubercle. Scale bars, 200 µm. (c–e) Responses of a TuTu1 neuron to different orientations of polarized blue (470 nm) light in the zenith (c) and different azimuthal positions of a green (530 nm; d) and a UV (350 nm; e) light spot. Background spiking activity is indicated by the red circles. Black bars show preference angles (DF_{max} from all recordings plotted against time of day of the experiments reveal diurnal changes in the difference angles. Celestial zenithal e-vectors in the columnar output arborizations of these tangential cells, covering roughly $2 \times 180^\circ$ along the 16 columns of the PB. Hence, activity in the columns of the PB is correlated to the orientation of the locust with respect to solar azimuth ([22]; figures 5b and 6). Finally, different sets of columnar neurons (types CP1, CP2 and CPU1) provide the output from the central complex. These cells participate in the azimuthal e-vector representation in the PB columns and probably receive input from PB-tangential cells (figure 5c), while ultimately projecting to several regions of the LAL [22]. These neurons are anatomically suited to combine azimuthal e-vector information from the PB with information present in the CBU to provide an integrated output signal from the central complex (figure 6).

All polarization-sensitive neurons of the central complex share polarization opponency with neurons at the more peripheral processing stages. In contrast to neurons of the anterior optic tubercle, most central-complex neurons integrate information from both eyes (except TL3 input stage neurons). Within the central complex, physiological properties are successively altered from one processing stage to the next [24]. Hereby, initially eccentric and comparably
small receptive fields are transformed into very large (up to 180° wide), zenith-centred receptive fields (figure 5e). In addition, the signal-to-noise ratio decreases from the input to the output stage of the central complex, suggesting that neuronal activity is increasingly influenced from sources of neuronal activity other than polarized light ([24]; figure 5d). Taken together, a highly specialized system for e-vector coding present at the central-complex input stage appears to be transformed into a position-invariant, potentially multimodal system coding for azimuth direction and head orientation within central-complex output neurons.

7. CONCLUSIONS AND OPEN QUESTIONS
Information on celestial e-vector orientation in the sky is processed in a stage-specific manner in the insect brain. Contrast enhancement through convergence of inputs and polarization opponency occurs at early levels in the lamina and outer medulla; a combination with sky chromatic input including compensation for changing solar elevation probably occurs in medulla outputs converging on the anterior optic tubercle. Integration of binocular inputs together with compass-like arrangement of e-vector tunings, finally, takes place in the central complex. The central complex may not only be essential for navigational
purposes, but probably provides a more general code of spatial directions, which might include recognizing and memorizing objects in space [32]. How outputs of the central complex are connected to descending pathways is slowly beginning to emerge [23], and recent recordings have identified the first polarization-sensitive descending neurons [33]. A still unresolved issue is the question how daytime changes in solar azimuth are compensated in long-range migratory species. It would require input from an internal circadian clock. A candidate brain area for convergence of polarization and timing information is the posterior optic tubercle (figure 5a). In locusts, it receives direct input from the accessory medulla [34], the internal circadian clock in cockroaches and flies [35]. Recent recordings showed that neurons with arborizations in the accessory medulla are sensitive to polarized light [36]. These data open the possibility that time-compensated polarized-light signals may reach the central complex via a second, posterior polarization-vision pathway for time-compensated sky compass navigation.

Questions in the broader context of spatial orientation that may be accessible in future studies concern the neural mechanisms underlying path integration using a sky compass, the integration of landmark information with vector-guided signalling and the unique transformation of sun azimuth-related directional coding into a gravity-related signal during dance communication in honeybees. All of these behaviours require some form of spatial learning, which might well be associated with an internal compass structure like the central complex.

We are grateful to Dr Thomas Labhart for providing images for figure 2, and to Birkhäuser Verlag, Cambridge University Press and Elsevier for permissions to use published material for figure 2. This work was supported by DFG grants HO 950-16 and HO 950-18 to U.H.

REFERENCES

