Review

Male germ cell apoptosis: regulation and biology

Chandrima Shaha1,*, Rakshamani Tripathi1 and Durga Prasad Mishra2

1Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi 110067, India
2Endocrinology Division, Central Drug Research Institute, Lucknow, India

Cellular apoptosis appears to be a constant feature in the adult testis and during early development. This is essential because mammalian spermatogenesis is a complex process that requires precise homeostasis of different cell types. This review discusses the latest information available on male germ cell apoptosis induced by hormones, toxins and temperature in the context of the type of apoptotic pathway either the intrinsic or the extrinsic that may be used under a variety of stimuli. The review also discusses the importance of mechanisms pertaining to cellular apoptosis during testicular development, which is independent of exogenous stimuli. Since instances of germ cell carcinoma have increased over the past few decades, the current status of research on apoptotic pathways in teratocarcinoma cells is included. One other important aspect that is covered in this review is microRNA-mediated control of germ cell apoptosis, a field of research that is going to see intense activity in near future. Since knockout models of various kinds have been used to study many aspects of germ cell development, a comprehensive summary of literature on knockout mice used in reproduction studies is also provided.

Keywords: apoptosis; spermatogenesis; orchitis; hormone; toxicant

1. INTRODUCTION

The body of a multicellular organism consists of trillions of cells. A large number of these cells die every day to maintain tissue homeostasis. For this, a process of death is required, which will not mount an immune response thereby protecting the neighbouring cells. Cell death can occur via several processes, few primary ones being necrosis, apoptosis, autophagy and entosis. Necrosis is caused by external factors such as infection, toxins or trauma and usually elicits an immune response, while death by apoptosis, effected by a cellular programme called programmed cell death, is a type of death that does not cause cell lysis and therefore does not initiate an inflammatory reaction. The term apoptosis was first used by Kerr, Wyllie and Currie in 1972 to describe a morphologically distinct form of cell death showing features like DNA laddering, chromatin condensation and membrane blebbing (Kerr et al. 1972). Autophagy involves degradation of a cell’s own components through the machinery involving lysosomes and is a tightly regulated process that plays a normal part in cell growth, development and homeostasis (Stromhaug & Klionsky 2001; Overholtzer et al. 2007). Entosis is a death process that occurs due to a neighbouring cell eating up a particular cell (Overholtzer et al. 2007). Apoptosis is the most well-studied process of cell death, and the tissue in which a high incidence of apoptosis occurs in vertebrate body is the testis where 75 per cent of all male germ cells produced are discarded through the process of apoptosis. Apoptosis has conventionally been considered an irreversible process with caspase activation committing a cell to death and the engulfment genes serving the purpose of dead cell removal. However, the uptake and clearance of apoptotic cells by macrophages may involve more than just the removal of cell debris because blocking of engulfment genes in Caenorhabditis elegans embryos enhances cell survival when cells are subjected to weak pro-apoptotic signals (Hoeppner et al. 2001). It is extremely important to illuminate the precise mechanisms of male germ cell apoptosis because of the very complex interactions of the diverse kinds of cells present within the testis and their differing ability to respond to different stimuli (Hikim et al. 2003). Building a knowledge base on the molecular components of the apoptotic programme in spermatogenic cells under different conditions is an essential step towards the development of novel therapeutic regimens to targeted approaches of male contraception and treatment of germ cell tumours and infertility.

2. SCOPE OF THE REVIEW

Both from the perspective of improving gamete production in infertile individuals and treatment of
testicular disorders, study of cell death in the testis is of great relevance for the betterment of reproductive health. This review attempts to provide an overview of apoptotic processes in the testis under several heads. First, it is important to know the molecules and pathways involved during development because this determines the future state of fertility. Second, how the toxins affect the testis is an essential issue because prevention of such effects especially in occupational healthcare requires implementation and for that targets for interruption needs to be identified. Other information reviewed here includes the influence of hormones on male germ cell apoptosis especially in view of concern about environmental oestrogens, and latest developments in understanding the role of microRNAs (miRNAs) in the testis. Since there are increased instances of testicular cancers due to environmental or other factors and testicular germ cell tumours (TGCT) are the most frequent solid malignancy in men of the age group 15–44 years in developed countries, the available literature on apoptosis in teratocarcinoma cells is reviewed as they are the core components of TGCT.

3. THE PROCESS OF APOPTOSIS

Apoptosis is broadly divided into an initiation phase, a signalling phase and an execution phase in which cells rapidly execute a death programme (Steller 1995). There are two major apoptotic pathways: the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway and molecules of one pathway can influence the other (figure 1; Igney & Krammer 2002). Additional pathways include the perforin/granzyme pathway that induce apoptosis via either granzyme B or granzyme A (Martinvalet et al. 2005) and the p53 pathway (figure 1) that is essential for cell growth regulation and apoptosis induced by genotoxic and non-genotoxic stresses (Vogelstein et al. 2000). Apoptosis is characterized by membrane blebbing, cell volume shrinkage, chromatin condensation, cytoplasmic vacuolization and disassembly of the cell into membrane-bound remnants termed apoptotic bodies (Majno & Joris 1995) that are eventually picked up by phagocytic cells. The biochemical features of apoptosis include phosphatidylserine exposure to the external leaflet of the plasma membrane, activation of caspase cascades, DNA cleavage and DNA laddering (Fadok et al. 1992). The process of apoptosis is important in the context of germ cells because the cells are undergoing both mitosis and meiosis and errors during this process may create a need for induction of cell death to eliminate cells with genetic defects (figure 2).

4. SPERMATOGENESIS

Spermatogenesis is a dynamic and synchronized process of maturation of stem spermatogonia into mature spermatozoa, which takes place in the seminiferous tubules of the testis. This process involves mitotic development of spermatogonia and their differentiation into spermatocytes followed by the formation of spermatids and mature spermatooza. As in many tissues throughout the body, the number of cells in the seminiferous tubules of the testis is determined by a dynamic balance between cell proliferation and apoptotic cell death (Russell et al. 2002). Both spontaneous and increased cell death due to triggering stimuli (deprivation of intratesticular testosterone and gonadotrophins, Sertoli cell toxicants, chemotherapeutic drug, etc.) occur via apoptosis.

5. APOPTOSIS IN MALE GERM CELLS

(a) Apoptosis via the intrinsic pathway during male germ cell development

Primordial germ cells originate at the embryo epiblast and eventually migrate to the developing gonad. During this event, there is apoptosis of cells that show aberrant migration. Excess cells generated during this period die by apoptosis that is largely dependent on Bcl-xL and Bax (Rucker et al. 2000). Bcl-x knockout heterozygous (Bcl-x(+/−)) mice exhibit severe defects in male germ cells during development (table 1). When the gonocytes differentiate into spermatogonia, phases of increased apoptosis known as the first wave of spermatogenesis occur. In rats and mice this event takes place between days 10 and 30 after birth. The first wave of spermatogenesis in mice and rats involves caspase 2 (Zheng et al. 2006), caspase 3, 8 and 9 indicating involvement of both extrinsic and intrinsic pathway of apoptosis (Moreno et al. 2006). In transgenic mice with Bax ‘knocked out’ or overexpressing Bcl-2 or Bcl-x (Fuhrchi et al. 1996), the early wave of apoptosis is eliminated resulting in the accumulation of spermatogonia and spermatocytes as a result of which the animals are infertile (Knudson et al. 1995). While Bcl-2-deficient mice display normal spermatogenesis, those expressing lower levels of Bcl-xL demonstrate increased germ cell death similar to Bax overexpression (Russell et al. 2002). Thus, genetically induced alterations of the balance between apoptosis-protecting and apoptosis-inducing proteins in the testis are sufficient to disturb the normal development of functional spermatogenesis (Russell et al. 2002). The dynamic changes in the expression profiles of Bcl-2 family proteins observed are consistent with a model in which germ cells are primed for apoptosis during the first cycle of spermatogenesis by de novo expression of the death effectors Bax and Bad in a p53-dependent manner and these proteins are prevented from triggering further apoptosis after the first spermatogenic cycle has been set up by anti-apoptotic Bcl-2 family proteins Bcl-xL and Bcl-w (Yan et al. 2000). Bcl-x hypomorphic mice show severe reproductive defects attributed to compromised germ cell development (table 1). The loss of Bcl-x function in the hypomorph corrected by the deletion of both copies of the Bax gene results in a restoration of germ cell survival (Rucker et al. 2000). Bcl-w mutant mice display progressive and nearly complete testicular degeneration (table 1). During the early wave, a high level of Bax expression is normally seen in germ cells of the testes (Rodriguez et al. 1997).

The role of Bcl2 in germ cell development is evident from the variable impairment of spermatogenesis observed when transgenic mice carrying 6 kb of the inhibin-alpha promoter are generated that express human Bcl-2 gene product in the gonads. These results support the critical role of Bcl-2 in male germ cell
development and are consistent with the gender-specific role of the Bcl-2 family members in reproduction (Yamamoto et al. 2001). Bcl6 protein has been detected in testicular germ cells, mainly spermatocytes, of normal mice, but its physiological role is largely unknown although mutants provide some information (see table 1 and review by Shaha 2008). Although testes develop normally in mice lacking either Bik or Bim, adult bik\((^{+/ -}\)) bim\((^{+/ -}\)) males are infertile (see table 1 and review by Shaha 2008).

(b) Apoptosis via the extrinsic pathway during male germ cell development

FasL activates Fas which is a 281 amino acid long type II transmembrane molecule. FasL and corresponding receptor Fas both interact as oligomers and the activated Fas receptor complex initiates a pro-apoptotic death signal in the receptor-bearing cell (Janssen et al. 2003). Fas receptor and Fas ligand are expressed in the testis (Guazzone et al. 2009) and considerable interest has been generated in understanding the role of these proteins in the control of apoptosis in the testis. It has been shown that upregulation of Fas receptor is associated with spermatocyte apoptosis during the first round of spermatogenesis in the rat (Lizama et al. 2007). Mice defective in Fas containing a spontaneous loss of function mutation in the Fas gene (homozygous for the lymphoproliferation spontaneous mutation, Fasl\(^{lpr}\)) or FasL (gld mice, homozygous for the Faslgld mutation) develop obvious lymphoproliferative and autoimmune diseases. Despite the apparent requirement of Fas and FasL for damage-induced germ cell apoptosis, lpr (lymphoproliferation) mutant mice are fertile with normal spermatogenesis (Lee et al. 1997). These studies suggest that this is due to a ‘salvage pathway’ that operates to control apoptosis. It appears that in the testes, either the lpr mutation has no effect owing to tissue-specific regulation, or a unique system is present to restore proper levels of Fas. The FasL mutant gld (generalized lymphoproliferative disease) mice that lack a functional Fas-signalling pathway have a small but significant increase in testis weight and numbers of spermatid heads per testis compared with wild-type mice. In addition, gld mice show spontaneous incidence of germ cell apoptosis (Richburg & Nanez 2003). The Fas/FasL system is also involved in germ cell apoptosis in humans. Hypospermatogenesis, such as maturation arrest (MA) and Sertoli cell-only syndrome (SCO), is a result of Fas/FasL-mediated process. Expression of FasL is upregulated in the...
testes of patients with SCO and MA, which suggests that it may be associated with apoptotic elimination or altered maturation of Fas-expressing germ cells through the activation of caspase-3 (Kim et al. 2004).

Studies from our laboratories show that under stimulation with oestradiol, both FasL and Fas are localized to different generations of germ cells (Mishra & Shaha 2005). It has been suggested that in humans, altered meiotic and postmeiotic germ cell maturation might be associated with an upregulation of Fas gene expression capable of triggering apoptotic elimination of defective germ cells (Francavilla et al. 2002). It is believed that Fas/FasL expression in the human testis is developmentally regulated and under gonadotropin control. Patients with postmeiotic germ cell arrest show increased Fas expression in germ cells suggesting that the Fas/FasL system may be involved in the quality control mechanism of the produced gametes (Francavilla et al. 2002).

(c) Hormones and male germ cell apoptosis
In the mammalian testes, follicle stimulating hormone (FSH), luteinizing hormone, human chorionic gonadotropin and testosterone have all been shown to regulate germ cell survival. Exposure to excess hormones or deprivation of hormones can lead to cellular apoptosis in the testis (see review by Shaha 2008). Sertoli cells have receptors for FSH and testosterone that are the main hormonal regulators of spermatogenesis. Hormone removal induces germ cell apoptosis (reviewed in Sofikitis et al. 2008). During seminiferous tubule maturation, testosterone and the synergistic action of FSH with oestradiol support germ cell survival while oestradiol alone has an inhibitory, pro-apoptotic effect. It has been shown that both extrinsic and intrinsic apoptotic death pathways are operative in the germ cells following decrease in FSH and testosterone levels; therefore, FSH and testosterone maintain spermatogenic homeostasis by inhibiting death signals for the germ cells (Pareek et al. 2007). Excess testosterone can cause death, for example, after injection of testosterone undecanoate, the expression of Fas/FasL in testis increase correlatively in a time-dependent manner, reaching a maximum level on day 30 (Zhou et al. 2001). In contrast, testosterone withdrawal stimulates caspase activity and produces DNA fragmentation in Sertoli cells, with only a weak effect on DNA fragmentation and caspase activity in germ cells (Tesarik et al. 2002). Evidence has accumulated over several decades now that oestrogen is essential for spermatogenesis and that intratesticular concentrations of oestrogen.

Figure 2. The pro- and anti-apoptotic molecules. Schematic diagram indicates points at which apoptosis occurs during spermatogenesis, the pro- and anti-apoptotic molecules involved and function of the apoptotic process related to the stages of sperm differentiation and maturation.
Table 1. Summary of data on male germ cell apoptosis using knockout mouse models.

<table>
<thead>
<tr>
<th>gene symbol</th>
<th>gene name</th>
<th>reproductive phenotype</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bax</td>
<td>Bc12-associated X protein</td>
<td>premeiotic arrest of spermatogenesis, first wave of spermatogenesis affected</td>
<td>Knudson et al. (1995)</td>
</tr>
<tr>
<td>Hsp70-2</td>
<td>heat shock protein 70-2</td>
<td>meiosis defect and germ cell apoptosis</td>
<td>Dix et al. (1996)</td>
</tr>
<tr>
<td>Mib1</td>
<td>MutL homologue 1</td>
<td>apoptosis of pachytene spermatocytes and infertility</td>
<td>Edelmann et al. (1996)</td>
</tr>
<tr>
<td>Crem</td>
<td>cAMP-responsive element modulator</td>
<td>germ cell apoptosis, late spermatids completely absent</td>
<td>Nantel et al. (1996)</td>
</tr>
<tr>
<td>HR6B</td>
<td>E2B ubiquitin conjugating enzyme</td>
<td>meiotic arrest, abnormal sperm morphology</td>
<td>Roest et al. (1996)</td>
</tr>
<tr>
<td>Fshb</td>
<td>FSH hormone β-subunit</td>
<td>decreased testis size</td>
<td>Kumar et al. (1997)</td>
</tr>
<tr>
<td>Daz1</td>
<td>deleted in azoospermia-like</td>
<td>reduced germ cells by apoptosis; differentiation failure and degeneration of germ cells</td>
<td>Ruggi et al. (1997)</td>
</tr>
<tr>
<td>A-myb</td>
<td>protooncogene A-myb</td>
<td>arrest at pachytene spermatocyte stage. Complete absence of postmeiotic cells such as spermatids or spermatozoa. Infertile testicular weight reduction and germ cell apoptosis</td>
<td>Toscani et al. (1997)</td>
</tr>
<tr>
<td>Bcl-w</td>
<td>BCL2-like protein apoptosis regulator, BCL-W B1-4 galactosyl-transferase</td>
<td>late meiotic arrest with loss of germ cells; progressive depletion of germ cells through accelerated apoptosis to a Sertoli cell-only phenotype</td>
<td>Ross et al. (1998), Russell et al. (2001)</td>
</tr>
<tr>
<td>Big</td>
<td>basigin</td>
<td>block in spermatogenesis at metaphase I</td>
<td>Igakura et al. (1998)</td>
</tr>
<tr>
<td>Cyp 19</td>
<td>functional aromatase</td>
<td>increased male germ cell apoptosis during spermiogenesis</td>
<td>Robertson et al. (1999)</td>
</tr>
<tr>
<td>Apaf1</td>
<td>apoptotic protease-activating factor I (Apaf-1)</td>
<td>spermatogonial degeneration</td>
<td>Honarpour et al. (2000)</td>
</tr>
<tr>
<td>Fshr</td>
<td>FSH receptor</td>
<td>decreased testis size</td>
<td>Krishnamurthy et al. (2000)</td>
</tr>
<tr>
<td>Synp3</td>
<td>synaptonemal complex protein 3</td>
<td>germ cell apoptosis during meiotic prophase</td>
<td>Yuan et al. (2000)</td>
</tr>
<tr>
<td>Bcl-6</td>
<td>Bcl-6 protein</td>
<td>spermatocyte apoptosis in metaphase I</td>
<td>Kojima et al. (2001)</td>
</tr>
<tr>
<td>LH/hCGr</td>
<td>LH/hCG receptors</td>
<td>germ cell arrest as primary spermatocytes</td>
<td>Lei et al. (2001)</td>
</tr>
<tr>
<td>TLF</td>
<td>TBP-like factor</td>
<td>complete arrest of spermiogenesis at round spermatid stage</td>
<td>Martiano et al. (2001)</td>
</tr>
<tr>
<td>TRF2</td>
<td>TATA-binding protein-like protein</td>
<td>postmeiotic spermiogenesis block</td>
<td>Zhang et al. (2001)</td>
</tr>
<tr>
<td>P18(ink4c)</td>
<td>D-type cyclin-dependent kinases (Cdk5)</td>
<td>testicular atrophy and germ cell apoptosis</td>
<td>Zindy et al. (2001)</td>
</tr>
<tr>
<td>P19(ink4d)</td>
<td>murine PIWI gene</td>
<td>round spermatid apoptosis</td>
<td>Deng & Lin (2002)</td>
</tr>
<tr>
<td>MIWI</td>
<td>testis-specific, cytoplasmic polyadenylate (poly(A)) polymerase</td>
<td>incomplete spermatid elongation and arrest of spermatogenesis</td>
<td>Kashwabara et al. (2002)</td>
</tr>
<tr>
<td>SH2-B</td>
<td>SH-2B homologue</td>
<td>small testes owing to increased germ cell apoptosis and reduced sperm counts</td>
<td>Ohtsuka et al. (2002)</td>
</tr>
<tr>
<td>PS3 and FasDouble knock out</td>
<td>cytochrome P45011a, cholesterol side chain cleavage</td>
<td>sequential germ cell apoptosis during development</td>
<td>Yin et al. (2002)</td>
</tr>
<tr>
<td>Fkbp6</td>
<td>FK506-binding protein</td>
<td>pachytene spermatocyte apoptosis, infertility</td>
<td>Crackower et al. (2003)</td>
</tr>
<tr>
<td>BclX</td>
<td>Bcl-2 like 1</td>
<td>in male primordial germ cells undergo apoptosis around E15.5</td>
<td>Kasai et al. (2003)</td>
</tr>
<tr>
<td>Bc121</td>
<td>CDC28 protein kinase regulatory subunit 2</td>
<td>male germ cell arrest at anaphase</td>
<td>Spruck et al. (2003)</td>
</tr>
<tr>
<td>Cks2</td>
<td>breast tumour suppressor gene 1</td>
<td>apoptosis of pachytene spermatocytes</td>
<td>Xu et al. (2003)</td>
</tr>
<tr>
<td>BRCA1</td>
<td>androgen receptor block in spermiogenesis in premeiotic diplotene, infertility</td>
<td>germ cell apoptosis</td>
<td>Chang et al. (2004)</td>
</tr>
<tr>
<td>Ar</td>
<td>oestrogen receptor beta</td>
<td>spermatogenesis arrested in early prophase</td>
<td>Delbes et al. (2004)</td>
</tr>
<tr>
<td>Mili</td>
<td>Piwi-like homologue 2</td>
<td>spermatogenesis arrested in early prophase</td>
<td>Kuramochi-Miyagawa et al. (2004)</td>
</tr>
<tr>
<td>LHbeta</td>
<td>luteinizing hormone beta</td>
<td>apoptosis in round spermatids</td>
<td>Ma et al. (2004)</td>
</tr>
<tr>
<td>Rxb</td>
<td>retinoid X receptor beta</td>
<td>accumulation of lipids in Sertoli cells, testicular degeneration and infertility</td>
<td>Mascro et al. (2004)</td>
</tr>
</tbody>
</table>

(Continued.)
are very high (Hess 2003). Since oestrogen receptors are present in the pituitary and spermatogenic cells, oestrogen-like chemicals can act as agonists or antagonists for the hormone and interfere with spermatogenesis and impaired fertility occurs in mice lacking oestrogen receptor-α (Korach 1994). Oestrogen receptor-β (Eddy et al. 1996) has been discovered, which is expressed in most of the spermatogenic cells (van Pelt et al. 1999). Reports of lowered fertility rates as a consequence of exposure to agents with oestrogenic activity termed as endocrine disruptors are well documented in wildlife populations (Nikula et al. 1999). In addition to such examples, it is well established that oestrogen administration to experimental animals during the neonatal period or adulthood can impair sperm production and maturation (McGlynn et al. 2008). Our studies demonstrate using both in vitro and in vivo models that oestrogen induces apoptosis in germ cells through the upregulation of Fas/FasL, and that FasL-mediated signal can emanate from different generations of germ cells (Nair & Shaha 2003; Mishra & Shaha 2005). Taken together, the effects of oestrogen on testicular function provide a conceptual basis to examine the speculative link between increased exposure to environmental oestrogens and reduced fertility.

(d) Toxicant-induced male germ cell apoptosis
A wide variety of toxins have been tested for their effects on germ cell survival. Most of them have been used to create models for the study of germ cell apoptosis and provide interesting insights into the process. The effects of toxins are summarized in Table 2 and for other details check review by Shaha (2008).

Phthalates are ubiquitous environmental toxicants capable of producing testicular atrophy owing to severe germ cell apoptosis in laboratory animals, which is related to increased levels of Sertoli cell FasL (Yao et al. 2007; Boekelheide et al. 2009).

Nitrobenzene (NB): a component of rubber, pesticides and pharmaceuticals, NB has been identified as a testicular toxicant in vivo. Adult, gld (generalized lymphoproliferation disease) mice treated with a single oral dose of NB (800 mg kg$^{-1}$) show a higher apoptotic index as compared with wild-type mice (table 2). Similarly, 8-week-old lpr/lpr Fas mutant mice treated with NB display a higher apoptotic index as compared with wild-type mice (table 2).

Ionizing radiation: many studies have addressed the effect of either X- or γ-irradiation on cell death in foetal, pre-pubertal and adult rodents (table 2).

Ethanol: among other compounds that affect tests, it is well known that ethanol exposure disrupts the hypothalamic–pituitary–gonadal axis and adversely affects the secretory function of Sertoli cells (table 2). Transgenic mice ubiquitously overexpressing human FasL when treated with 20 per cent ethanol exhibits significantly more apoptotic germ cells than wild-type mice suggesting FasL expression determines the sensitivity of testes to ethanol in mice (Eid et al. 2002).

Bisphenol A (BPA): BPA is an organic compound, which is a difunctional building block of several

Table 1. (Continued.)

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Gene name</th>
<th>Reproductive phenotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1t2</td>
<td>Testis-specific and histone H1 variant</td>
<td>Abnormal cell restructuring and DNA condensation during the elongation phase of spermatogenesis, reduced fertility block in spermatogenesis before the first meiotic division</td>
<td>Martianov et al. (2005)</td>
</tr>
<tr>
<td>CcnA1</td>
<td>Cyclin A1</td>
<td>Delayed nuclear elongation, apoptosis at pachytene and metaphase I</td>
<td>Dantzer et al. (2006)</td>
</tr>
<tr>
<td>Purp-2</td>
<td>Poly(ADP-ribose) polymerase-2</td>
<td>Sertoli cell apoptosis and infertility</td>
<td>Hyughe et al. (2006)</td>
</tr>
<tr>
<td>MFP-2</td>
<td>Multifunctional protein-2</td>
<td>Spermatocytes fail to synapse and progress beyond zygote stage, infertility</td>
<td>Smirnova et al. (2006)</td>
</tr>
<tr>
<td>Spo11</td>
<td>Meiosis-specific protein Spo11</td>
<td>Premiotic germ cells exhibited cell cycle arrest and apoptotic elimination of premeiotic germ cells</td>
<td>Takubo et al. (2006)</td>
</tr>
<tr>
<td>Atm</td>
<td>Ataxia telangiectasia</td>
<td>Spermatid apoptosis leading to infertility</td>
<td>van der Weyden et al. (2006)</td>
</tr>
<tr>
<td>TSLC1</td>
<td>Tumour suppressor of lung cancer 1</td>
<td>Apoptosis of early meiotic prophase spermatocytes, degeneration or germ cells and infertility</td>
<td>Doyle et al. (2007)</td>
</tr>
<tr>
<td>Rara</td>
<td>Retinoic acid receptor A protein</td>
<td>Embryonic germ cell apoptosis</td>
<td>MacLean et al. (2007)</td>
</tr>
<tr>
<td>Cyp26b1</td>
<td>Retinoic acid (RA) metabolizing cytochrome P450 enzyme</td>
<td>Germ cells undergo apoptosis during meiosis</td>
<td>Mhaouty-Kodja et al. (2007)</td>
</tr>
<tr>
<td>Alpha 1-b-AR</td>
<td>Alpha 1-b-adrenergic receptor</td>
<td>Regulation of gonocyte numbers</td>
<td>Petre-Lazar et al. (2006)</td>
</tr>
<tr>
<td>P63</td>
<td>P63</td>
<td>Germ cell apoptosis in pachytene spermatocytes</td>
<td>Volle et al. (2007)</td>
</tr>
<tr>
<td>LXR alpha</td>
<td>Liver X receptor alpha</td>
<td>Apoptosis</td>
<td>Koltur-Seetharam et al. (2009)</td>
</tr>
<tr>
<td>SIRT1</td>
<td>Sirtuin-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
important plastics and polycarbonate and has been classified as an endocrine disruptor (table 2).

Lindane: lindane, an organochlorine pesticide is known to impair rat testicular functions and fertility through modulation of NF-κB and FasL (table 2).

2-Bromopropane (2-BP): 2-BP, an intermediate in the synthesis of pharmaceuticals, dyes and other organic chemicals, is known to be a male reproductive toxin and epidemiological surveys and animal experimental studies suggest that exposure to 2-BP could result in reproductive and haematopoietic disorders (see table 2 and review by Shaha 2008).

2,5-Hexanedione (2,5-HD): 2,5-HD is a metabolite of the common industrial solvents n-hexane and methyl n-butyl ketone and is well known to cause apoptosis of male germ cells (Moffit et al. 2007). Using an in vitro spermatogenic cell apoptosis model, we showed that HD caused a significant increase in reactive oxygen species followed by an enhancement of intracellular Ca^{2+} through the T-type Ca^{2+} channels and cell death is induced through the participation of Bcl-xL and Bcl-xS (see table 2 and review by Shaha 2008).

4-Tert-octylphenol (4-OP): Environmental pollutants that have oestrogenic activity and therefore have the potential to behave like oestrogens are known as endocrine disruptors or environmental oestrogens (Sonnenschein & Soto 1998). 4-OP classified as an environmental oestrogen (Blake & Boockfor 1997) is known to disrupt testicular development and reduce male fertility through interference with synthesis of steroidogenesis (table 2).

(e) Temperature-induced male germ cell apoptosis

The scrotal location of the testis allows the germ cells to survive at a lower temperature than that of the main body and germ cell apoptosis occur following exposure to elevated temperatures. Studies using the gld and lprcg (lymphoproliferation complementing gld) mice, which harbour loss-of-function mutations in Fas L and Fas, respectively, show that heat-induced germ cell apoptosis is not blocked in these mice. Therefore, evidence that the Fas-signalling system is not required for heat-induced germ cell apoptosis in the testis is provided by these studies (see review by Shaha 2008). Cryptorchidism, a condition in which the testes are exposed to body temperature rather than scrotal temperature, is a frequent male sexual disorder in mammals, which affects testsis functioning (Bernal-Manas et al. 2005) through the participation of Bcl-2 and Bax proteins (Xu et al. 2000; Zhang et al. 2003). P53-dependent apoptosis appears responsible for the initial phase of germ cell loss in experimental cryptorchidism based on a 3-day delay of apoptosis in p53^{−/−} mice. p53^{−/−}, lpr/lpr double-mutant mice with unilateral cryptorchidism show testicular weight reduction and germ cell apoptosis where the Fas production increased in the time frame of p53-independent apoptosis in the experimental cryptorchid testis of wild-type mice. These results suggest that Fas is involved in heat-induced testicular germ cell apoptosis and that Fas-dependent apoptosis is responsible for the p53-independent phase of germ cell loss in

Table 2. Summary of available literature on toxin-induced male germ cell apoptosis.

<table>
<thead>
<tr>
<th>toxin</th>
<th>phenotype</th>
<th>apoptotic gene involved</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethane-1,2-dimethanesulfonate</td>
<td>rapid decrease in testosterone levels followed by a characteristic pattern of germ cell loss</td>
<td>Fas, FasL Apaf-1/caspase-9</td>
<td>Bakalska et al. (2004), Woolveridge et al. (2001)</td>
</tr>
<tr>
<td>di-(2-ethylhexyl) phthalate</td>
<td>testicular atrophy due to severe germ cell apoptosis</td>
<td>Fas, FasL</td>
<td>Boekelheide et al. (2009), Ryu et al. (2007), Kuramori et al. (2009), Kijima et al. (2004)</td>
</tr>
<tr>
<td>nitrobenzene</td>
<td>higher apoptotic index</td>
<td>Fas not required</td>
<td>Richburg & Nanez (2003), Allenby et al. (1990)</td>
</tr>
<tr>
<td>ethanol</td>
<td>Sertoli cell vacuolization and germ cell degeneration of Leydig and germ cells</td>
<td>Fas/FasL</td>
<td>Koh (2007), Hu et al. (2003), Vera et al. (2004)</td>
</tr>
<tr>
<td>bisphenol A</td>
<td>impair the number of germ cells in the foetal gonads</td>
<td>Fas/FasL, NF-κB and FasL</td>
<td>Li et al. (2009a,b)</td>
</tr>
<tr>
<td>lindane</td>
<td>initiation of primary apoptosis of spermatogonia; reproductive and haematopoietic disorders</td>
<td>downregulation of anti-apoptotic protein Bcl-2 and upregulation of pro-apotopic protein Bax</td>
<td>La Sala et al. (2009), Saradha et al. (2009)</td>
</tr>
<tr>
<td>2,5-hexanedione</td>
<td>step 19 spermatids fail to spermatocyte in rats; apoptosis of male germ cells</td>
<td>Bcl-xL, Bcl-xS</td>
<td>Kim et al. (1999), Yu et al. (2001)</td>
</tr>
<tr>
<td>4-tert-octylphenol</td>
<td>disrupt testicular development</td>
<td>Bcl-xL reduction</td>
<td>Kim et al. (2004)</td>
</tr>
</tbody>
</table>

Phil. Trans. R. Soc. B (2010)
the cryptorchid testis (Yin et al. 2002). Blockade of caspase 2 activation prevents heat-induced germ cell apoptosis in rats by suppressing the MAPK14 (Johnson et al. 2008; Li et al. 2009a,b). Serine phosphorylation of Bcl-2 and activation of the MAPK14-mediated mitochondria-dependent pathway are critical for heat-induced male germ cell death in monkeys (Jia et al. 2007).

(f) Orchitis-induced male germ cell apoptosis

Autoimmune orchitis is an autoimmune inflammation of the testis that results in degeneration and apoptosis of germ cells owing to a T-cell-mediated mechanism that disrupts testicular immunoprivilege inducing infertility (for reviews see Tung 1995). Recently, it has been shown that extrinsic, mitochondrial and possibly ER pathways are inducers of germ cell apoptosis in experimental autoimmune orchitis and that Bax and Bcl-2 proteins modulate this process (Theas et al. 2006).

(g) Apoptosis in the terminally differentiated spermatozoa

Terminal differentiation of sperm shares many morphological and biochemical features with apoptosis. However, rather than causing the death of the entire cell, apoptotic proteins are used to specifically eliminate cytoplasmic components, thereby producing a highly specialized living cell. Intracellular bridges between spermatids and the spermatid cytoplasm need to be eliminated during mammalian spermatogenesis. In mammals, at the end of sperm cell differentiation, the cytoplasm collects in the residual body (RB) that displays several features of apoptosis. Although a role of caspases for the removal of bulk cytoplasm during mammalian spermatogenesis remains to be established, data showing that active caspase-3 is present in RBs in the testes of mice are available. The abnormal spermatozoa with residual cytoplasm resulting from caspase inhibition in Drosophila bear a striking resemblance to one of the most commonly seen abnormalities known as cytoplasmic droplet. Therefore, it is possible that defects in proper caspase activation may be responsible for this abnormality. The murine septin4 gene (Sept4) has been implicated in diverse cellular functions, including cytokinesis, apoptosis and tumour suppression. A targeted deletion of the Sept4 genomic locus results in viable mice but males are sterile due to immobile and structurally defective sperm showing attached RB. During spermatogenesis, Sept4 mutant sperm showed defects in the elimination of residual cytoplasm during sperm maturation and had increased staining for the caspase inhibitor XIAP. This is consistent with the role of ARTS (a pro-apoptotic protein, one of the four splice variants derived from the Sept4 locus) in promoting caspase-mediated removal of cytoplasm via inhibition of XIAP (Kissel et al. 2005). Ectopic overexpression of a protease-dependent caspase homologue c-FLIP(L) in round and elongated spermatids cause a dramatic loss of germ cells resulting in defective spermatozoa (Antonangeli et al. in press).

6. APOPTOSIS IN TERATOCARCINOMA CELLS

Testicular carcinoma is the most frequent solid malignant tumour in men of the age group 15–44 years in developed countries, representing 13.4 per cent of new cancer cases (Parkin et al. 2005). The most significant risk factor for testicular cancer is cryptorchidism, which increases the risk up to 11-fold (Kinkade 1999). Exposure to endocrine-disrupting chemicals may alter hormonal balance leading to defects in normal apoptosis and thereby increase risk of TGCT (McGlynn et al. 2008). These tumours are classified into seminomalous and non-seminomatous germ cell tumours. The seminoma retains a germ cell-like phenotype, whereas the non-seminoma retains embryonic stem cell features and comprises embryonal carcinoma and various mixtures of differentiated teratomatous tissue components (Almstrup et al. 2004). The main drugs used to treat testicular cancer are cisplatin, vinblastine, bleomycin, cyclophosphamide, etoposide, paclitaxel and ifosfamide. Cisplatin is a platinum-based compound and causes DNA intra- and inter-stand cross-links, which when not repaired leads to apoptosis. DNA damage by cisplatin results in transcription inhibition, activation of multiple signalling pathways including upregulation of p53 levels, phosphorylation of p38 MAP kinase and Erk1/2 and the others signalling pathways both in vitro and in vivo (Wu et al. 2005; Chauhan et al. 2009), which lead to apoptosis in the TGCT. The human TGCT cell lines show an extraordinary sensitivity to treatment with cisplatin and cells undergo apoptotic death upon treatment (Johnstone et al. 2002). The mechanism by which cisplatin kills cells is through the generation of reactive oxygen species, also known as one of the intermediates following chemotherapy (Wu et al. 2005). UV (10 or 20 J m⁻²) radiation causes a massive apoptosis of human teratoma Tera-2 or murine testicular carcinoma F9 cells, both of which contain wild-type p53, but not murine p53 null testicular carcinoma EB-16 cell line. The UV irradiation can induce p53 by suppressing MDM2 expression in a p53-independent fashion and subsequently, massive cell death (Zeng et al. 2000). Overexpression of Mcl-1, an anti-apoptotic protein of the Bcl-2 family may function to enhance the viability of testicular germ cells, thereby leading to tumorigenesis (Sano et al. 2005).

7. MICRONRNAS AS REGULATORS OF MALE GERM CELL APOPTOSIS

miRNAs are a group of highly conserved, non-coding, endogenous small RNAs (typically 19–23 nt long) that strongly regulate gene expression through post-transcriptional gene silencing (Valencia-Sanchez et al. 2006) involving mRNA degradation, translational repression, chromatin modification and gene silencing (Carmell et al. 2002; Bernstein & Allis 2005). Certain classes of miRNAs are exclusively and preferentially expressed in the testis (Kim 2006; Ro et al. 2007) and are mechanistically involved in mammalian spermatogenesis (Kotaja et al. 2006; Maatouk et al. 2008; Nagamori & Sassone-Corsi 2008; Lian et al. 2009).

Phil. Trans. R. Soc. B (2010)
(a) Biosynthesis and mode of action of miRNAs during spermatogenesis

Biogenesis of miRNAs during spermatogenesis starts with the transcription of the miRNA genes in the nucleus of germ cells by RNA Pol II to form the Pri-miRNA. The Pri-miRNAs are capped, polyadenylated and subsequently processed by the RNase III endonuclease, Drosha. Following this event, the miRNA precursors are transported into the cytoplasm and processed from a long hairpin miRNA transcript (about 23-nucleotide duplex) essentially requiring an RNase III endonuclease enzyme known as Dicer. The mature miRNAs are then assembled into an RNA-induced silencing complex (RISC), which subsequently functions on targets by translational repression or mRNA cleavage.

One of the prominent features of nuclear changes during spermatogenesis is the drastic compaction of sperm chromatin resulting in the abrogation of transcriptional activity at later stages of germ cell maturation (Sassone-Corsi 2002; Kotaja et al. 2006b). During this period, translation of many spermatid-specific genes is arrested and observations indicate that translational arrest of transition protein 2 mRNA occurs through miRNA122a and has been reported to be involved in aberrant spermatogenesis (Yu et al. 2005). The spermatids of stages IV–VI in mice have a unique perinuclear structure called the ‘chromatoid body’. Recent studies have reported that several RNAs (miRNAs and mRNA), RISC components (Dicer, Ago2, Ago3 and GW182) and Piwi homologue MIWI are indispensable for spermatogenesis (Carmell et al. 2007) and are concentrated in the chromatoid body. The mature form of let7-a, a kind of miRNA is concentrated in the chromatoid body (Kotaja et al. 2006a), which is a characteristic structure in the cytoplasm of spermatocyte and spermatids (figure 3).

(b) Evidence for specific role of miRNAs in spermatogenesis

Recent experimental evidence suggests that miRNAs regulate germ cell apoptosis for quality control (Maatouk et al. 2008; Papaioannou et al. 2009). Mouse maelstrom homologue (MAEL) protein is found in unsynapsed chromosomes of the spermatocyte nucleus and in the chromatoid body. Furthermore, MAEL interacts with the miRNA pathway-associated proteins like mouse vasa homologue (MVH, a germ-cell-specific RNA helicase), piwi-like homologue 2 (MILL) and piwi-like homologue 1 (MIWI) (Argonaute family members; Costa et al. 2006). MicroRNA-mediated translational repression involving PIWI/Argonaute family proteins has been widely recognized as a novel mechanism of gene regulation and germ cell numbers during spermatogenesis (Grivna et al. 2006).

The conditional knockout mouse lacking proper Dicer1 function have abnormal germ cell differentiation, elongation and sperm motility resulting in infertility (Maatouk et al. 2008). The selective ablation of Dicer in mouse Sertoli cells lead to severe impairment of the prepubertal spermatogenic wave owing to defective Sertoli cell maturation and inability to properly support meiosis and spermiogenesis leading to complete absence of spermatozoa and progressive testicular degeneration and subsequent infertility (Papaioannou et al. 2009). As Dicer is a component of the miRNA pathway, these studies underscore the importance of precise miRNA biogenesis in male germ cell quality control during spermatogenesis. A recent study using Ago 2-mutated mice has established that the critical function of Dicer in spermatogenesis is independent of Argonaute2. During development of male germ cells, miR-17-92 cluster, which is thought to promote cell cycling, and the ES cell-specific cluster encoding miR-290 to -295 (miR-290-295 cluster) were highly expressed in primordial germ cells and spermatogonia. Taken together, it could be concluded that miRNAs are important for the proliferation and/or early differentiation of stem cell population in spermatogenesis (Hayashi et al. 2008).

(c) Clinical significance of miRNAs in male germ cell survival

The meiotic and haploid phases of spermatogenesis are characterized by high transcriptional activity but suppressed translational activity. Post-transcriptional control of gene expression in these phases can be mediated by sequences in the 5' and 3'-untranslated regions (UTRs) of miRNAs where they could be regulated by miRNAs, suggesting that miRNAs might play important roles in spermatogenesis (Braun 1998; Kotaja et al. 2006b; Hayashi et al. 2008). These studies suggest possibilities that aberrant miRNA expression could be associated with male infertility. In a study using microarray and quantitative real-time PCR assays with testicular tissues of patients with non-obstructive azoospermia (NOA) versus normal controls identified 154 differentially downregulated and 19 upregulated miRNAs. Altered miRNA expression of NOA in these fertile patients was suggestive of the role of miRNAs in regulating spermatogenesis in human males (Lian et al. 2009).

8. KNOCKOUT AND TRANSGENIC MOUSE MODELS IN THE STUDY OF MALE GERM CELL APOPTOSIS

In recent times, the availability of suitable mouse models for the study of male germ cell apoptosis has opened up new avenues in the understanding of the process during normal and abnormal states of spermatogenesis (Knudson et al. 1995) and has helped to elucidate the molecular mechanisms of action of the cellular death machinery during germ cell apoptosis thereby providing the basis for the identification of novel targets for male contraception and effective management of male infertility. In the case of male germ cell apoptosis, research using knockout mice allows the effect of specific gene disruptions on the resulting phenotype to be viewed and is often a more preferred system compared with the transgenic mouse model that suffers from the problem of variable expression of the transgene over generations. However, in case of a knockout mouse model, the phenotype is a direct result of the ablation of a targeted gene and can
provide clues as to the specific biological role of the gene in male germ cell apoptosis. Major findings on the role of pro- and anti-apoptotic proteins derived from knockout mice models include premeiotic arrest of spermatogenesis and first wave of spermatogenesis in \textit{Bax} knockout mice (Knudson \textit{et al.} 1995), significant germ cell apoptosis in \textit{p53} knockouts (Beumer \textit{et al.} 1998), progressive depletion of germ cells through accelerated apoptosis to a Sertoli cell-only phenotype in \textit{Bclw} knockout (Ross \textit{et al.} 1998) and an increase in spermatogonial numbers leading to disruption of spermatogenesis in \textit{Bik}, \textit{Bim} knockouts (Coultas \textit{et al.} 2005). Data from various knockout models are summarized in table 1. Although knockouts provide relevant data, in the reproductive system redundancy plays an important role and data obtained could thus be involving proteins other than the knocked down ones. Therefore, these data should be interpreted with caution and verified through \textit{in vivo} studies with wild-type organisms.

9. APOPTOTIC MARKERS FOR PREDICTION OF SPERM FERTILIZABILITY

Apoptotic markers can potentially be used to assess the fertilizability of spermatozoa. For example, markers for loss of mitochondrial potential are good markers for fertilizability of spermatozoa (Ortega-Ferrusola \textit{et al.} 2009). Increased caspase activity, annexin-V staining and DNA fragmentation can also serve as important markers for sperm survival and ability to fertilize. Sperm with low motility express higher caspase activity and exposure of phosphatidylserine. DNA fragmentation is detected in sperm with lower motility (Weng \textit{et al.} 2002). Therefore, it is evident that markers for apoptosis can also serve as diagnostic parameters for sperm fertilizability. Further research into other apoptotic markers can reinforce this field of study.

10. CONCLUSIONS AND PERSPECTIVES

This review has attempted to highlight the recent developments in the field of male germ cell apoptosis in general including developmental and induced cell death because germ cell apoptosis is involved in every step of testicular development. At present, significant literature is available on the apoptotic pathways in the testis but many aspects are still not understood. Since the testis is a complex organ with different cell types dependent on each other for survival, the challenge is now to identify the functional relevance of inter- and intracellular regulators of germ cell apoptosis. With the realization that miRNAs play a significant role in male germ cell

\textit{Phil. Trans. R. Soc. B} (2010)
apoptosis, it is essential to pinpoint the various miRNAs at regulatory points and work out possible induction or inhibition models. Testicular carcinoma of germ cell origin is another model that should be studied to improve modalities of treatment that are toxic at present. The key questions that remain are: (i) are there other apoptotic pathways that are involved in male germ cell apoptosis, like caspase-independent pathways or the granzyme-mediated cell death? (ii) Does autophagy play a role in sperm differentiation or death? (iii) What are the upstream signalling pathways to the apoptotic pathway that actually transmit signals for initiation of apoptosis?

This work was supported by Indo-US CRHR grant from the Department of Biotechnology, New Delhi, India, and J.C. Bose Fellowship to C.S.

REFERENCES

Braun, R. E. 1998 Every sperm is sacred— or is it? Nat. Genet. 18, 202–204. (doi:10.1038/ng0938-202)

Eid, N. A., Shibata, M. A., Ito, Y., Kusakabe, K., Hammad, H. & Otsuki, Y. 2002 Involvement of Fas system and active caspasess in apoptotic signalling in testicular germ

Janssen, O., Qian, J., Linkermann, A. & Kabczcnits, D. 2003 CD95 ligand–death factor and costimulatory molecule?

Theas, M. S., Rival, C., Dietrich, S. J., Guazzone, V. A. & Lustig, L. 2006 Death receptor and mitochondrial pathways are involved in germ cell apoptosis in an...

Phils. Trans. R. Soc. B (2010)