QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II

Eduardo M. Sproviero, Katherine Shinopoulos, José A. Gascón†, James P. McEvoy‡, Gary W. Brudvig and Victor S. Batista*

Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA

This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn$_4$CaO$_4$Mn metal cluster with three closely associated manganese ions linked to a single µ$_4$-oxo- ligated Mn ion, often called the ‘dangling manganese’. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S$_1$→S$_2$ transition should produce opposite effects on the two water-exchange rates.

Keywords: oxomanganese complexes; photosystem II; oxygen evolution; photosynthesis; quantum mechanics/molecular mechanics; density functional theory

1. INTRODUCTION

The oxygen-evolving complex (OEC) of photosystem II (PSII) is a high-valent manganese- and calcium-containing cofactor that catalyses water cleavage to dioxygen according to the so-called ‘S-state’ catalytic cycle (figure 1), proposed by Joliot & Kok (Joliot et al. 1969; Kok et al. 1970). Substrate water molecules responsible for O$_2$ formation are thought to ligate to metal ions in the OEC early in the catalytic cycle, as suggested by pulsed electron paramagnetic resonance (EPR) spectroscopy (Britt et al. 2004; Evans et al. 2004), near infrared Raman spectroscopy (Cua et al. 2000) and Fourier transform infrared spectroscopy (Noguchi & Sugiuira 2002; Kimura et al. 2005). This paper analyses the specific water-binding sites and the effect of oxidation of the OEC on substrate water binding, which remain controversial.

A direct scrutiny of substrate water molecules by time-resolved mass spectrometry (MS) has determined different exchange rates (k_{ex}) with bulk 18O-labelled water of the two substrate water molecules of the OEC in the S$_0$, S$_1$, S$_2$ and S$_3$ states (Hillier & Wydrażynski 2000, 2001, 2004). The more slowly exchanging water (W$_{slow}$) was found to be associated with Ca$^{2+}$, implying that the fast-exchanging water (W$_{fast}$) must be bound to a manganese ion. This is rather surprising since manganese ions are thought to be higher valent (e.g. Mn$^{3+}$ or Mn$^{4+}$) than Ca$^{2+}$ in the OEC. In addition, it has been observed that the exchange rate of W$_{slow}$ ($k_{ex}^{(S1)}$) increases by two orders of magnitude upon S$_1$→S$_2$ oxidation, with $k_{ex}(S1)=0.02$ s$^{-1}$ and $k_{ex}(S2)=2.0$ s$^{-1}$ (Hendry & Wydrażynski 2003; Hillier & Wydrażynski 2004). These exchange rates correspond to activation energies of approximately 20 and 17 kcal mol$^{-1}$ in the S$_1$ and S$_2$ states, respectively. Considering that the S$_1$→S$_2$ transition involves oxidation of a manganese centre, the observed acceleration of the exchange of W$_{slow}$ is also intriguing since it implies that the oxidation of a manganese centre must indirectly affect the exchange rate of a calcium-bound water molecule. While these observations are reproducible and unambiguous, it is not clear whether they can be rationalized by previously proposed mechanistic models (Pecoraro et al. 1998; Vrettos et al. 2001; Messinger 2004). The calculations reported in this paper address both of these...
obdevations through the analysis of structural models of the OEC in the S₁ and S₂ states (Sproviero et al. 2006a,b, 2007).

The computational models are constructed using state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, with QM layers described by the density functional theory (DFT) with the Becke-3–Lee–Yang–Parr (B3LYP) hybrid density functional, in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus (Ferreira et al. 2004). This work builds upon recent studies where the capabilities and limitations of the B3LYP functional were investigated as applied to the studies of structural and electronic properties of high-valent multinuclear oxomanganese complexes (Sproviero et al. 2006a,b, 2007).

The computational models involve coordination of substrate water molecules as terminal ligands, in agreement with earlier proposals (Hoganson & Babcock 1997; Haumann & Junge 1999; Schlodder & Witt 1999; McEvoy & Brudvig 2004; Messinger 2004; McEvoy et al. 2005a,b; Sproviero et al. 2006a), but in contrast to other suggested models that involve coordination as oxo-bridges between Mn ions (Brudvig & Crabtree 1986; Pecoraro et al. 1994; Yachandra et al. 1996; Nugent et al. 2001; Robblee et al. 2001; Messinger 2004). The reported computations address general aspects of water exchange as well as the underlying mechanisms of water exchange for the OEC of PSII in the S₁ and S₂ states. The calculations thus complement earlier studies of water exchange in transition metal complexes (Rotzinger 1997; Helm & Merbach 1999; Rotzinger 2005; Cady et al. 2006; Houston et al. 2006; Tagore et al. 2006, 2007), including theoretical studies of manganese complexes, based on Hartree–Fock and complete active-space self-consistent field theories (Rotzinger 1997, 2005; Tsutsui et al. 1999; Lundberg et al. 2003) as well as DFT studies of water exchange in other transition metal complexes (Deeth & Elding 1996; Hartmann et al. 1997, 1999; Vallet et al. 2001; Lundberg et al. 2003).

The computational models involve coordination of substrate water molecules as terminal ligands, in agreement with earlier proposals (Hoganson & Babcock 1997; Haumann & Junge 1999; Schlodder & Witt 1999; McEvoy & Brudvig 2004; Messinger 2004; McEvoy et al. 2005a,b; Sproviero et al. 2006a), but in contrast to other suggested models that involve coordination as oxo-bridges between Mn ions (Brudvig & Crabtree 1986; Pecoraro et al. 1994; Yachandra et al. 1996; Nugent et al. 2001; Robblee et al. 2001; Messinger 2004). The reported computations address general aspects of water exchange as well as the underlying mechanisms of water exchange for the OEC of PSII in the S₁ and S₂ states. The calculations thus complement earlier studies of water exchange in transition metal complexes (Rotzinger 1997; Helm & Merbach 1999; Rotzinger 2005; Cady et al. 2006; Houston et al. 2006; Tagore et al. 2006, 2007), including theoretical studies of manganese complexes, based on Hartree–Fock and complete active-space self-consistent field theories (Rotzinger 1997, 2005; Tsutsui et al. 1999; Lundberg et al. 2003) as well as DFT studies of water exchange in other transition metal complexes (Deeth & Elding 1996; Hartmann et al. 1997, 1999; Vallet et al. 2001; Lundberg et al. 2003).

2. DFT–QM/MM MODELLING

The QM/MM methodology involves the two-layer ONIOM electronic-embedding (EE) approach (Dapprich et al. 1999), as implemented in GAUSSIAN v. 03 (Frisch et al. 2004), combined with high-quality initial states for the ligated OEC metal cluster that were obtained using ligand field theory (Vacek et al. 1999) as implemented in JAGUAR v. 5.5 (Schrodinger 2004). The combined approach exploits the high efficiency of ligand field theory for definitions of specific initial-guess spin-electronic states, the flexible definitions of QM layers according to the link-hydrogen atom scheme and the possibility of modelling open-shell systems by performing unrestricted DFT (e.g. UB3LYP) calculations.

The study of transition metal compounds has been dominated by the well-established B3LYP functional. However, the estimated error of the B3LYP treatment of water-exchange energy barriers is approximately 2–3 kcal mol⁻¹ (Helm & Merbach 1999; Lundberg et al. 2003). Unfortunately, this error is comparable to the observed changes of activation energies induced by oxidation of the OEC. Therefore, quantitative calculations of activation energy barriers are still beyond the capabilities of DFT. The reported studies are thus focused on the qualitative and semiquantitative analysis of general aspects of substrate water-exchange mechanism as determined by the nature of the metal cluster and the effect of electrostatic interactions with the surrounding protein environment.

The QM layer includes the following: the Mn₃CaO₄Mn complex; the directly ligating carboxylate groups of D1–E189, CP43–E354, D1–A344, D1–E333, D1–D170, D1–D342 and the imidazole ring of D1–H332; and bound water molecules, hydroxide and chloride ions. The QM layer thus includes all species in the first coordination shell of metal centres as well as the exchanging water molecule W* (figure 2). The rest of the system defines the MM layer. The boundaries between QM and MM layers are defined for the corresponding amino acid residues (i.e. D1–E189, CP43–E354, D1–A344, D1–E333, D1–D170, D1–D342 and D1–H332) by completing the covalency of frontier atoms according to the standard link-hydrogen atom scheme.

The total energy E of the system is computed as follows:

\[E = E_{\text{QM,full}} + E_{\text{MM,red}} - E_{\text{QM,red}} \]

(2.1)

where \(E_{\text{QM,full}} \) is the energy of the complete system as described by the Amber MM force field, while \(E_{\text{QM,red}} \) and \(E_{\text{MM,red}} \) are the energies of the reduced system computed at the QM and MM levels of theory, respectively. Electrostatic interactions between the reduced system and the surroundings are included in the evaluation of \(E_{\text{QM,red}} \) and \(E_{\text{MM,red}} \) at the QM and MM levels, respectively. Therefore, the resulting QM/MM evaluation of the total energy E involves a quantum mechanical description of polarization of the reduced system due to the electrostatic influence of the surrounding protein environment. In addition, the polarization of the protein environment, usually neglected in standard QM/MM calculations, is modelled according to the self-consistent ‘Moving Domain–QM/MM’ (MoD–QM/MM) approach (Gascon et al. 2006).
3. STRUCTURAL MODELS OF THE O₂-EVOLVING CENTRE

The QM/MM hybrid models of the OEC in PSII suggest that the two substrate water molecules can bind to Ca²⁺ and Mn(4) on the ‘active face’ of the OEC (Sproviero et al. 2006a), consistent with the previously proposed mechanistic hypothesis (Pecoraro et al. 1998; Vrettos et al. 2001; McEvoy et al. 2005b; figure 2). Two redox states of comparable energies are predicted: model (a) where the dangling manganese Mn(4) is pentacoordinated and the oxidation states are Mn₄(IV,IV,III,III) (i.e. Mn(1)=IV, Mn(2)=IV, Mn(3)=III, Mn(4)=III) and model (b) where an additional water ligand is completing the hexacoordinated shell of Mn(4) and the oxidation states are Mn₄(IV,IV,III,IV). These results are partially consistent with EPR and X-ray spectroscopic evidence (Ono et al. 1992; Yachandra et al. 1993; Roelofs et al. 1996; Bergmann et al. 1998; Iuzzolino et al. 1998; Dau et al. 2001; Messinger et al. 2001) but disagree with the suggested low-valent Mn₄(III,III,III,III) state (Zheng & Dismukes 1996; Kuzek & Pace 2001).

Table 1. ESP charges, spin population and formal oxidation numbers of metal centres and substrate water molecules in DFT-QM/MM models of the OEC of PSII, introduced in the text, in the S₁ and S₂ states.

<table>
<thead>
<tr>
<th>centre</th>
<th>ESP charge</th>
<th>spin pop. (oxid. no.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S₁</td>
<td>S₂</td>
</tr>
<tr>
<td>Mn(4)</td>
<td>+1.35</td>
<td>+1.49</td>
</tr>
<tr>
<td>Mn(3)</td>
<td>+1.26</td>
<td>+1.59</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>+1.77</td>
<td>+1.56</td>
</tr>
<tr>
<td>O(W₁)²⁻</td>
<td>−0.82</td>
<td>−0.96</td>
</tr>
<tr>
<td>O(W₂)²⁻</td>
<td>−0.90</td>
<td>−0.88</td>
</tr>
</tbody>
</table>

a Oxygen of W₁ ligated to Ca²⁺.

b Oxygen of W₂ ligated to Mn(4).

In contrast to the incomplete ligation scheme suggested by the X-ray model structures, the QM/MM models involve metal ions with the usual number of ligands (i.e. five and six ligands coordinated to Mn ions with oxidation states III and IV, respectively, and seven to eight ligands attached to Ca²⁺, which usually finds six to eight ligands). The proteinaceous ligation includes the following: n²-coordination of E333 to both Mn(3) and Mn(2) and hydrogen bonding to the protonated CP43-E354 (neutral state) residue; monodentate coordination of D342, CP43-E354 and D170 to Mn(1), Mn(3) and Mn(4), respectively; and ligation of E189 and H332 to Mn(2). The relative stability of the two redox states is determined by the strained coordination of H332 to the Mn cluster. The hexacoordinated Mn(2) stabilizes the oxidation state IV when Mn(4) is pentacoordinated, and the oxidation state III (with a Jahn–Teller elongation along the Mn–H332 axis) when the coordination sphere of Mn(4) is complete.

Both the redox isomers of the OEC of PSII are neutral in the S₁ state and predict anti-ferromagnetic coupling between Mn(1) and Mn(2), Mn(2) and Mn(3), and Mn(3) and Mn(4), but frustrated spin coupling between Mn(1) and Mn(3) in the cuboidal structure. Table 1 presents the DFT-QM/MM analysis of distribution spin populations and charge in the metal centres of the OEC model (a).

4. WATER BINDING TO THE O₂-EVOLVING CENTRE

The QM/MM structural models, introduced in §3, allow for the evaluation of specific metal–water interactions and the potential energy profiles associated with the MEPs for water detachment and exchange. The MEPs are found by energy minimization with respect to nuclear and electronic coordinates, while progressively detaching substrate water molecules from their corresponding coordination metal centres. The resulting structural rearrangements provide an insight on the water-exchange mechanisms and the relative binding strengths since elongation of the metal–oxygen...
The underlying charge-transfer delocalization process involves both alpha and beta d-orbitals in manganese. Further, it is found that the difference is mainly due to change delocalization mechanism involves both alpha and beta orbitals in similar amounts. Therefore, the total charges of the manganese ions are significantly reduced while the number of unpaired electrons (i.e., the oxidation state) remains almost unchanged. Therefore, the

The computational results reported in figure 3 and table 1 are also consistent with the experimental observation that k_{slow} increases and k_{fast} decreases upon S1 \rightarrow S2 oxidation (Hillier & Wydrzynski 2004). These opposite changes in the two water-exchange rates, induced by the S1 \rightarrow S2 transition, can also be traced to the corresponding changes in ESP ionic charges modulated by charge-transfer interactions. Table 1 shows that the redistribution of charge, induced by the S1 \rightarrow S2 oxidation, decreases the ionic charge of calcium ($\Delta q = -0.21$) and increases the ionic charge of Mn(4) ($\Delta q = +0.24$). This is consistent with the energetic analysis predicting that S1 \rightarrow S2 oxidation weakens the Ca$_2^+$--W$_\text{slow}$ bond and strengthens the coordination of W$_\text{fast}$ to Mn(4).

In order to analyze the origin of the underlying redistribution of electronic density, we note that the oxomanganese complex is neutral in the S1 resting state, as described by the DFT-QM/MM models. Upon S1 \rightarrow S2 oxidation, however, the complex becomes positively charged, strengthening the electrostatic interactions with negatively charged ligands. In particular, Ca$_2^+$ and D1-A344 are paired up by charge-transfer interactions, and most of the electronic density acquired by Ca$_2^+$ upon S1 \rightarrow S2 oxidation ($\Delta q = -0.21$) is transferred from the ligated carboxylate group of D1-A344 (the corresponding change in the ESP atomic charge of the ligated oxygen atom of D1-A344 is $\Delta q = +0.2$). These results indicate that charge-transfer interactions are strongly modulated by the oxidation state of the oxomanganese complex, indirectly regulating substrate water binding to the metal cluster.

In addition to the ESP approach, various other methods are available for the analysis of partial atomic charges, yielding slightly different quantitative results. However, the methods consistently predict that: (i) the atomic charges of Ca$_2^+$, Mn$_3^+$ and Mn$_4^{+1}$ in the OEC are always smaller than their corresponding formal charges, due to charge-transfer interactions with coordinated counternions, (ii) the reduction of atomic charges is more significant for high-valent manganese ions Mn$_3^+$ and Mn$_4^{+1}$ than for Ca$_2^+$, and (iii) the charge of Ca$_2^+$ is further neutralized upon S1 \rightarrow S2 oxidation by charge transfer with the carboxylate ligand of D1-A344.

Considering that the Mn$_3$CaO$_4$Mn metal cluster involves carboxylate groups ligated to Ca$_2^+$ as well as carboxylate ligands coordinated to Mn$_3^+$ and Mn$_4^{+1}$, it is important to address the origin of the preferential charge transfer between D1-A344 and Ca$_2^+$ upon S1 \rightarrow S2 oxidation of the OEC. To this end, we have performed a bond-order analysis, based on natural atomic orbitals (Reed et al. 1988). The results indicate that Mn--O bonds are predominantly covalent dative (Wiberg bond index = 1.05) while the Ca--O bonds are ionic (Wiberg bond index = 0.32). The difference is mainly due to charge delocalization from the p-orbitals of the oxo-ligands to vacant d-orbitals in manganese. Further, it is found that the delocalization mechanism involves both alpha and beta orbitals in similar amounts. Therefore, the total charges of the manganese ions are significantly reduced while the number of unpaired electrons (i.e., the oxidation state) remains almost unchanged. Therefore, the

![Figure 3. DFT-QM/MM energy profiles as a function of the coordination bond lengths between substrate water molecules attached to Ca$_2^+$ (grey lines) and the dangling Mn$_3^+$ (black lines), for the OEC of PSII in the S1 (dashed lines) and S2 (solid lines) states. ESP ionic charges are indicated in parenthesis (q). Energy barriers are 19.3, 16.6, 8.4 and 7.9 kcal mol$^{-1}$ for water exchange from Ca$_2^+$ to Mn$_3^+$, respectively.](http://rstb.royalsocietypublishing.org/)
underlying charge delocalization between manganese and oxo-bridges indirectly affects the relative strengths of charge-transfer interactions between metal centres and carboxylate ligands.

Figures 4–6 show the initial and TS configurations along the MEPs for water exchange from Ca²⁺, as described by the DFT-QM/MM structural models of the OEC, including a detailed description of coordination bond lengths. In the initial states (figure 4), substrate water molecules are attached to the metal centres forming hydrogen bonds with the exchanging water molecules. In the TS configurations (figures 5 and 6), the coordination bonds of the substrate water molecules are stretched and the substituting water molecules are displaced relative to their initial positions. Further displacement beyond the transition state induces coordination of the exchanging water molecules. This structural analysis indicates that the exchange mechanism involves concerted interchange with dissociative character (i.e., without formation of any intermediate state of lower or higher coordination number).
These findings suggest that the molecular environment surrounding the OEC of PSI has been highly optimized by natural selection to stabilize the attachment of substrate water molecules to metal centres, correlating their orientations and displacements and reducing the interactions with surrounding amino acid residues. At the same time, the hydrophobic environment stabilizes the coordination of Cl− to the ionic cluster as well as the coordination of the oxomanganese cluster to carboxylate groups of proteinaceous ligands.

5. CONCLUDING REMARKS

The computational analysis of water binding in complete DFT-QM/MM structural models of the OEC in PSII indicates that the barriers for exchange of Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. The calculations also provide theoretical support to the surprising experimental finding that the slow-exchanging substrate water of the OEC is associated with calcium, implying that the fast-exchanging substrate water is coordinated with manganese. Furthermore, the DFT-QM/MM models provide a rationale for the opposing effects of the S1→S2 transition on the two rate constants. It is concluded that the mechanism and energetics of water binding to metal centres in the OEC is not simply correlated to the formal oxidation states of the metal ions but rather to their corresponding partial ionic charges, as modulated by charge-transfer interactions with coordinated ligands. The reported findings help to rationalize experimental results probing substrate water molecules in the water-splitting chemistry of PSII, providing fundamental insight into the electronic structure of the OEC and the surrounding protein environment.

V.S.B. acknowledges supercomputer time from the National Energy Research Scientific Computing (NERSC) center and financial support from Research Corporation, Research Innovation Award no. RIo702, a Petroleum Research Fund Award from the American Chemical Society PRF no. 37789-G6, the National Science Foundation (NSF) Career Program Award CHE no. 0345984, the Alfred P. Sloan Fellowship and the Camille Dreyfus Teacher-Scholar Award. G.W.B. acknowledges support from the National Institutes of Health, grant GM32715.

REFERENCES

Ph. Trans. R. Soc. B (2008)
Reed, A. E., Curtiss, L. A. & Weinhold, F. 1988 Inter-
molecular interactions from a natural bond orbital, donor–
1021/cr00088a005)

Robblee, J. H., Cinco, R. M. & Yachandra, V. K. 2001 X-ray
transpon spectroscopy based structure of the Mn cluster and mecha-
Acta 1503, 7–23. (doi:10.1016/S0009-2728(00)00217-6)

Roelofs, T. A., Liang, W. C., Latimer, M. J., Cinco, R. M.,
Rompel, A., Andrews, J. C., Sauer, K., Yachandra, V. K. &
Klein, M. P. 1996 Oxidation states of the manganese
center during the flash-induced S-state cycle of the
Sci. USA 93, 3335–3340. (doi:10.1073/pnas.93.8.3335)

Rotzinger, F. P. 1997 Mechanism of water exchange for the
di- and trivalent metal hexaqua ions of the first transition
ja9635950)

Rotzinger, F. P. 2005 Performance of molecular orbital
methods and density functional theory in the computation of
geometries and energies of metal aqua ions. J. Phys.

Schlodder, E. & Witt, H. T. 1999 Stoichiometry of proton
release from the catalytically center in photosynthetic water
1074/jbc.274.3.30387)

Schroeder, L. 2004 Titanium. Portland, Oregon:
Schodinger, Inc.

Sproviero, E. M., Gascon, J. A., McEvoy, J. P., Brudvig,
G. W. & Batista, V. S. 2006a QM/MM models of the
O2-evolving complex of photosystem II. J. Chem.

Sproviero, E. M., Gascon, J. A., McEvoy, J. P., Brudvig,
G. W. & Batista, V. S. 2006b Characterization of synthetic
oxo-manganese complexes and the inorganic core of the
O2-evolving complex in photosystem II: evaluation of the
DFT/B3LYP level of theory. J. Inorg. Biochem. 100,
786–800. (doi:10.1016/j.inorgbio.2006.01.017)

Sproviero, E. M., Gascon, J. A., McEvoy, J. P., Brudvig,
G. W. & Batista, V. S. 2007 Quantum mechanics/
molecular mechanics structural models of the oxygen-
evolving complex of photosystem II. Curr. Opin. Struct.

Tagore, R., Chen, H. Y., Crabtree, R. H. & Brudvig, G. W.
2006 Determination of μ-oxo exchange rates in di-μ-oxo
dimangan complexes by electrospray ionization mass
1021/ja061348i)

Tagore, R., Crabtree, R. H. & Brudvig, G. W. 2007 Distinct
mechanisms of bridging-oxo exchange in di-μ-O dimana-
ganese complexes with and without water-binding sites:
implications for water binding in the O2-evolving complex of
1021/ic061968k)

Tsutsui, Y., Wasada, H. & Funahashi, S. 1999 Reaction
mechanism of water exchange on di- and trivalent
cations of the first transition series and structural stability of
seven-coordinate species. THEOCHEM 461–462,

Vacek, G., Perry, J. K. & Langlois, J. M. 1999 Advanced
initial-guess algorithm for self-consistent-field calculations
on organometallic systems. Chem. Phys. Lett. 310,

Vallet, V., Wahlgren, U., Schimmelpfennig, B., Szabo, Z. &
Grenthe, I. 2001 The mechanism for water exchange in
[UO2(H2O)4]2+ and [UO2(oxalate)2(H2O)]4+, as studied by
quantum chemical methods. J. Am. Chem. Soc. 123,
11 999–12 008. (doi:10.1021/ja015935+)

Vrettos, J. S., Limburg, J. & Brudvig, G. W. 2001 Mechanism
of photosynthetic water oxidation: combining biophysical
studies of photosystem II with inorganic model chemistry.
S0005-2728(00)00214-0)

Yachandra, V. K., DeRose, V. J., Latimer, M. J., Mukerji, I.,
Sauer, K. & Klein, M. P. 1993 Where plants make oxygen:
a structural model for the photosynthetic oxygen-evolving
science.8480177)

Yachandra, V. K., Sauer, K. & Klein, M. P. 1996 Manganese
cluster in photosynthesis: where plants oxidize water to
1021/cr950052k)

Zheng, M. & Dismukes, G. C. 1996 Orbital configuration of the
valence electrons, ligand field symmetry, and manga-
nese oxidation states of the photosynthetic water oxidizing
complex: analysis of the S2 state multilinie EPR signals.

Discussion

V. L. Pecoraro (University of Michigan, Michigan, USA).
How did you truncate the protein to do your calculations?

V. S. Batista. The models consider about 2000 atoms of
PSII including the Mn3CaO4Mn complex and all
amino acid residues with α-carbons within 15 Å from
any atom in the OEC metal cluster.

V. L. Pecoraro. How did you determine the boundary
between QM and MM regions?

V. S. Batista. Determining the QM/MM boundary
requires an iterative approach where the structural
and electronic (spin-state) properties of the system are
evaluated for various different sizes of the QM layer.
The QM/MM boundary is defined for subsequent
calculations so that results are converged relative to
the size of the QM layer.

V. L. Pecoraro. How did you determine the coordi-
nation number of Ca2+?

V. S. Batista. We obtained fully relaxed configurations
of the system and we counted the number of ligands in
the first coordination sphere with distances smaller
than approximately 3 Å from Ca2+.

W. L. Junge (University of Osnabrück, Osnabrück,
Germany). What was the calculated relaxation time of
your calculations?

V. S. Batista. We have analysed only stationary states.
W. L. Junge. Concerning the hydrophobic environment
of chloride, what would be the effective dielectric
constant?

V. S. Batista. The dielectric constant of the surrounding
protein environment is estimated to be approximately 4.

P. E. M. Siegbahn (Stockholm University AlbaNova
University Center, Stockholm Center for Physics,
Astronomy and Biotechnology, Stockholm, Sweden). In your talk, you
focus on strong-field, low-spin states. In the OEC
chemistry, it is probably quite important that the ground
states are weak-field, high-spin states. Have you, or are
you intending to do work with high-spin states?

V. S. Batista. We have explored the relative stability of
high-spin versus low-spin states in various benchmark
complexes previously characterized by EPR and X-ray
spectroscopic measurements. In addition, we have
performed an exhaustive analysis of relaxed confor-
mations of the OEC in various possible initial-guess spin-
electronic states.