Analysis of phenotype–genotype connection: the story of dissecting disease pathogenesis in genomic era in China, and beyond

Yan Shen1,2,*, Qi Xu1, Zeguang Han3, Han Liu4 and Guang-Biao Zhou5,*

1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, 10005 Beijing, People’s Republic of China
2Chinese National Human Genome Center at Beijing, 100176 Beijing, People’s Republic of China
3Chinese National Human Genome Center at Shanghai, 201203 Shanghai, People’s Republic of China
4State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, 200025 Shanghai, People’s Republic of China
5Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 510663 Guangzhou, People’s Republic of China

DNA is the ultimate depository of biological complexity. Thus, in order to understand life and gain insights into disease pathogenesis, genetic information embedded in the sequence of DNA base pairs comprising chromosomes should be deciphered. The stories of investigating the association between phenotype and genotype in China and other countries further demonstrate that genomics can serve as a probe for disease biology. We now know that in Mendelian disorders, one gene is not only a dictator of one phenotype but also a dictator of two or more distinct disorders. Dissecting genetic abnormalities of complex diseases, including diabetes, hypertension, mental diseases, coronary heart disease and cancer, may unravel the complicated networks and crosstalks, and help to simplify the complexity of the disease. The transcriptome and proteomic analysis for medicine not only deepen our understanding of disease phenotype but also provide novel diagnostic and therapeutic strategies. Taken together, genomic research offers a new opportunity for determining how diseases occur, by taking advantage of experiments of nature and a growing array of sophisticated research tools to identify the molecular abnormalities underlying disease processes. We should be ready for the advent of genomic medicine, and put the genome into the doctors’ bag, so that we can help patients to conquer diseases.

Keywords: phenotype; genotype; genome; China

1. INTRODUCTION

China, a great country with 5000 years of history and 9.6 million square kilometres of land area, has 56 minority nationalities (figure 1) and a total population of 1.3 billion, making it one of the richest human genetic resources in the world. China is also the country where the most diversity and complexity of diseases can be seen and is wealthy in species of plants and animals. For a long time, Chinese scientists have contributed great effort to interpret the genetic basis of the biodiversity and elucidate the pathogenesis of diseases. The launch of the Human Genome Project (HGP) in China in 1993 greatly accelerated this process and tremendous advances have been seen in the past decade. In addition, the HGP has promoted the derivation of science branches in China such as transcriptomics, toxicogenomics, pharmacogenomics, systems biology, Cancer Genome Anatomy Project/Human Cancer Genome Project, proteomics and so on. Owing to these efforts, molecular medicine is not only the future focus but also the present focus of medicine in China.

2. THE HUMAN GENOME PROJECT AND THE INTERNATIONAL HUMAN GENOME HAPMAP PROJECT IN CHINA: A BRIEF INTRODUCTION

The notion that most genetic information is embedded in the sequence of DNA base pairs comprising chromosomes is a central tenet of modern genetics. Renato Dulbecco, a Nobel Prize winning molecular biologist, laid out his ideas of sequencing the genome to understand the genetic origins of cancer in a commentary for Science (Dulbecco 1986). After a wide discussion in the public, the HGP was launched in October 1990 (Roberts et al. 2001) to map out the sequence of the 3 billion nucleotide pairs, thus to unveil the information of human genetics and decode the structure and function of the genes in the human body.

Chinese scientists have been hunting for disease-related genes and key players of biodiversity in China for a long time. The HGP has attracted much attention from both scientists and decision makers because it is believed that HGP can help to promote these studies. In 1994, the first national-level project on the human genome was launched by the National Natural Science Foundation of China under the initiation of scientists including Min Wu, Zhu Chen and Boqin Qiang (Qiang 2004). Owing to limited resources at that time, the goals of this first project were to focus on the establishment of...
Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Aimed at speeding up the discovery of genes related to common illnesses such as asthma, cancer, diabetes and heart disease, the International HapMap Project was launched in 2002 jointly by the United States, United Kingdom, Japan, China and Canada. By comparing genetic differences among individuals, consortium members believed that they could create a tool to help researchers detect the genetic contributions to many diseases, making the results of genomic research applicable to individuals. The Chinese scientists are responsible for around 10% of the whole effort. In 2005, the consortium reported a public database of common variation in the human genome: more than 1 million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500 kb regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. The International HapMap Consortium shows how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution (Altshuler et al. 2005).

3. DISSECTING DISEASE PATHOGENESIS IN GENOMIC ERA: THE GENES AS DICTATOR OF PHENOTYPE IN MENDELIAN DISORDERS

Through its contribution to the HGP, China has trained its own researchers and developed good technological platform for medical genetics and genomics research, resulting in many of remarkable achievements in this area during the past 10 years, especially in the identification of disease-related genes and relevant functional studies.

(a) IHH gene mutations in brachydactyly type A-1: one gene, one disease

Brachydactyly is an inherited disease and can be classified into five types—A, B, C, D and E—on the basis of malformation of the digits. Brachydactyly type A-1 (BDA1; figure 2a) is characterized by shortening of the middle phalanges which may be fused to the distal ones, and is the first recorded example of a human anomaly with Mendelian autosomal dominant inheritance. Two large families, the affected members of which were radiographed, were studied by Yang et al. (2000). Two-point linkage analysis for pedigree 1 and pedigree 2 mapped the locus for BDA1 to chromosome 2q in the two families. Haplotype analysis of pedigree 1 confined the locus for family 1 within an interval of less than 8.1 cM flanked by markers D2S2248 and D2S360, which was mapped to chromosome 2q35–q36 on the cytogenetic map. Haplotype analysis of pedigree 2 confined the locus for family 2 within an interval of less than 28.8 cM flanked by markers...
GATA30E06 and D2S427, which was localized to chromosome 2q35–q37. Gao et al. (2001) showed that mutations in IHH, which encodes Indian hedgehog, cause BDA-1. They have identified three heterozygous missense mutations in the region encoding the amino-terminal signalling domain (figure 2b, c) in all affected members of three large, unrelated families. The three mutant amino acids, which are conserved across all vertebrates and invertebrates studied so far, are predicted to be adjacent on the surface of IHH.

(b) Cataract: gene mutations result in blindness
Congenital cataracts are an important cause of blindness worldwide, causing 10–30% of all blindness in children, with one-third of cases estimated to have a genetic cause. Lamellar cataract is the most common type of infantile cataract. Bu et al. (2002) screened individuals of three Chinese families for mutations in HSF4 (a gene at this locus that encodes heat shock transcription factor 4) and discovered that in each family, a distinct missense mutation, predicted to affect the DNA-binding domain of the protein, segregates with the disorder. They also discovered an association between a missense mutation and Marner cataract in an extensive Danish family. Their results suggest that HSF4 is critical to lens development and HSF mutation may cause blindness. Meanwhile, in a family of Chinese descent, a dominant congenital nuclear cataract locus was mapped to chromosome 17q11.1–12. The maximum logarithm of odds (LOD) score, 2.49, at recombination fraction \(\theta = 0 \), was

Figure 2. Brachydactyly type A-1 and IHH mutation. (a) Short middle phalanges (i) and relevant radiographs (ii). (b) Structure of IHH and location of mutations. (c) Schematic of IHH protein and sites of amino acid residue transition and cleavage. Reproduced with permission from Gao et al. (2001) Nat. Genet. © Macmillan Magazines Ltd.

Figure 3. (a) Dentinogenesis imperfecta 1, (b) hearing loss and (c) mutations in DSPP. Figure (a) was reproduced with permission from Zhang et al. (2001) Nat. Genet.; figure (b) was reproduced with permission from Xiao et al. (2001) Nat. Genet.; figure (c) was modified with permission from Xiao et al. (2001) Nat. Genet. © Macmillan Magazines Ltd.
obtained for marker D17S1294. The results of both linkage and haplotype analyses defined a disease gene to an 11.78 cM region harbouring the gene coding for betaA1/A3 crystallin (CRYBA1/A3). Mutation analysis of the CRYBA1/A3 gene identified a 3 bp deletion in exon 4, which co-segregated with the disease risk in this family and was not observed in 100 normal chromosomes. This mutation resulted in the deletion of a highly conserved glycine at codon 91 (DeltaG91) and could be associated with an incorrect folding of betaA1/A3 crystallin. It highlights the physiological importance of crystallin and supports the role of CRYBA1/A3 in human cataract formation (Qi et al. 2004). These results demonstrate that mutations in certain genes are directly involved in blindness.

(c) Dentinogenesis imperfecta associates with hearing loss: studies of dentin sialophosphoprotein

Dentinogenesis imperfecta 1 (DGI1; figure 3a) is an autosomal dominant dental disease characterized by abnormal dentin production and mineralization. Zhang et al. (2001) identified a nonsense mutation (Gln45stop) in exon 3 of the dentin sialophosphoprotein (DSPP) gene in a Chinese family with dentinogenesis imperfecta Shields type II (DGI-II), in which the affected members showed discoloration and severe attrition of their teeth, with obliterated pulp chambers. Meanwhile, Xiao et al. (2001) studied three Chinese families carrying DGII and found that the affected individuals of two families also presented with progressive sensorineural high-frequency hearing loss (gene DFNA39). They identified three disease-specific mutations within the DSPP in these three families and detected a G → A transition at the donor-splicing site of intron 3 in one family without DFNA39, a mutation predicted to result in the skipping of exon 3. However, in two other families affected with both DGII and DFNA39, they identified two independent nucleotide transversions in exons 2 and 3 of DSPP, respectively, which cause missense mutations of two adjacent amino acid residues in the predicted transmembrane region of the protein. Moreover, transcripts of DSPP previously reported to be expressed specifically in teeth are also detected in the inner ear of mice. These data demonstrated for the first time that distinct mutations in DSPP are responsible for the clinical manifestations of DGII1 with or without DFNA39, and mutation in the DSPP gene could also cause high-frequency hearing loss at the same time. These two groups identified a total of four different mutations, making a strong case that the DSPP gene is the one causing DGI (figure 3b).

(d) Hearing loss and skin disease: one connexin, two diseases

The complexity of human genetic disease continues to confuse and it sometimes seems remarkable that much progress has been made in identifying disease genes when subsequent work shows that the story is much more involved than was at first imagined. An example comes from the study of GJB3, which locates on chromosome 1p34 and encodes the connexin 31 component of gap junctions (figure 3). Gap junctions connect adjacent cells, allowing small molecules to pass from one cell to the next, and are believed to play an important role in intercellular communication. Members of the connexin family have highly conserved sequences and four transmembrane domains separating two extracellular loops and one cytoplasmic loop, with cytoplasmic carboxy- and amino-terminal ends. Functions of each domain are reported (figure 3). Six connexin molecules assemble to form one connexon, which docks with its counterpart in the neighbouring cell to form the gap junction channel (Bruzzone et al. 1996; Goodenough et al. 1996; Steel 1998). Mutations in the gene encoding connxin 26 (GJB2) cause both autosomal recessive and dominant forms of hearing impairment (Kelsell et al. 1997; Denoyelle et al. 1998). To study the possible involvement of other members of the connexin family in hereditary hearing impairment, Xia et al. (1998) cloned the GJB3 using homologous EST searching and nested PCR. Mutation analysis revealed that a missense mutation and a nonsense mutation of GJB3 (figure 3a) were associated with high-frequency hearing loss in two families. Moreover, expression of GJB3 was identified in the rat inner ear tissue by RT-PCR. These findings suggest that mutations in GJB3 may be responsible for bilateral high-frequency hearing impairment.

Erythrokeratodermia variabilis (EKV; figure 4) is an autosomal dominant genodermatosis with considerable intra- and interfamilial variability. It has a disfiguring phenotype characterized by the independent occurrence of two morphological features: transient figurate red patches and localized or generalized hyperkeratosis. Both features can be triggered by external factors such as trauma to the skin. Interestingly, Richard et al. (1998) detected heterozygous missense mutations in GJB3 in four EKV families leading to substitution of a conserved glycine by charged residues (G12R and G12D) or change of a cysteine (C86S). These mutations are predicted to interfere with normal connxin 31 structure and function, possibly due to a dominant inhibitory effect. These results implicate connxin 31 in the pathogenesis of EKV and provide evidence that intercellular communication mediated by connxin 31 is crucial for epidermal differentiation and response to external factors.

How can the same gene underlie two such different diseases? Both the mutations associated with hearing loss affect residues in an extracellular loop that is thought to be involved in regulating the specificity of connxin–connxin interactions. One of these, the nonsense mutation, should truncate the protein, eliminating the fourth transmembrane domain and the C-terminal region with its four potential sites for phosphorylation, which are believed to have a role in controlling gating of the whole channel. In contrast, the N-terminal domain harbouring two of the missense mutations that cause the skin disorder is thought to be involved in determining the polarity of the voltage gating (i.e. it determines whether the channel opens when the cytoplasm is at negative or positive potential). The third ‘skin’ mutation affects a residue that sits next to a conserved proline residue in the second transmembrane domain which is critical for voltage-gating activity. Thus, the mutations in GJB3 may affect different aspects of channel function, which might explain the different phenotypes (Steel 1998).
(e) Role of KCNQ1 in cardiac arrhythmia: different mutations, different risks

Genetic factors contribute to the risk of sudden death from cardiac arrhythmias. The long QT syndrome (LQTS) is a cardiac disorder characterized by prolongation of the QT interval on electrocardiograms, syncope and sudden death caused by a specific ventricular tachyarrhythmia known as torsade de pointes, while atrial fibrillation (AF) is a common cardiac arrhythmia whose molecular aetiology is poorly understood. In 1996, positional cloning methods established KVLQT1 (KCNQ1) as the chromosome 11-linked LQT1 gene responsible for the most common inherited cardiac arrhythmia. KVLQT1 is strongly expressed in the heart and encodes a protein with structural features of a voltage-gated potassium channel. KVLQT1 mutations are present in affected members of 16 arrhythmia families, including one intragenic deletion and 10 different missense mutations. These data defined KVLQT1 as a novel cardiac potassium channel gene and show that mutations in this gene cause susceptibility to ventricular tachyarrhythmias and sudden death (Wang et al. 1996). Chen et al. (2003b) studied a family with hereditary persistent AF and identified the causative mutation (S140G) in the KCNQ1 (KVLQT1) gene on chromosome 11p15.5. The KCNQ1 gene encodes the pore-forming α subunit of the cardiac I(Ks) channel (KCNQ1/KCNE1), the KCNQ1/KCNE2 and the KCNQ1/KCNE3 potassium channels. Functional analysis of the S140G mutant revealed a gain-of-function effect on the KCNQ1/KCNE1 and KCNQ1/KCNE2 currents, which contrasts with the dominant negative or loss-of-function effects of the KCNQ1 mutations previously identified in patients with LQTS. Thus, the S140G mutation is likely to initiate and maintain AF by reducing action potential duration and effective refractory period in atrial myocytes. Taken together, KCNQ1 is critical to maintain regular cardiac rhythm and its mutations may cause LQTS or AF.

Yang et al. (2004b) evaluated 28 unrelated Chinese kindreds with AF and sequenced eight genes of potassium channels (KCNQ1, HERG, KCNE1, KCNE2, KCNE3, KCNE4, KCN5 and KCNJ2). An arginine-to-cysteine mutation at position 27 (R27C) of KCNE2, the β subunit of the KCNQ1–KCNE2 channel responsible for a background potassium current, was found in 2 out of the 28 probands. The mutation was present in all affected members in the two kindreds, but was absent in 462 healthy unrelated Chinese subjects. Similar to KCNQ1 S140G, the mutation had a gain-of-function effect on the KCNQ1–KCNE2 channel; unlike LQTS-associated KCN2 mutations, it alters neither HERG–KCNE2 current nor the functions of the HCN channel family. Thus, KCNE2 R27C is a gain-of-function mutation associated with the initiation and/or maintenance of AF.

(f) Skin diseases and gene mutations: strong linkage

Disseminated superficial actinic porokeratosis (DSAP) is a chronic cutaneous disorder characterized by multiple superficial keratotic lesions surrounded by a slightly raised keratotic border. It develops in teenagers in sun-exposed areas of skin and usually follows an autosomal dominant inheritance pattern. To determine the locus of DSAP and identify the candidate gene(s) of the disease, Zhang et al. (2005) performed genome-wide scan and linkage analysis in a six-generation Chinese family with DSAP. The coding exons of the candidate genes were sequenced to analyse and detect the nucleotide variations. Linkage analysis showed that the maximum two-point LOD score of 5.56 was obtained with the marker D12S79 at a recombination fraction $\theta=0.00$. Haplotype analysis defined the critical region for DSAP between D12S330 and D12S1612 on chromosome 12q, followed by a genome-wide scan with 382 microsatellite markers from the autosomes. Genetic linkage analysis with chromosome 12q markers suggested that the locus in this family is not linked to chromosome 12q. A genome-wide scan and fine mapping finally localized the locus for DSAP in this family to a 6.4 cM region between markers D15S1023 and D15S1030 at chromosome 15q25.1–26.1. This DSAP locus was named DSAP2. A locus at chromosome 12q23.2–24.1 was also found to be responsible for DSAP; the related gene might be located within a 9.6 cM region between markers D12S1727 and D12S1605, with a maximum two-point LOD score of 20.53 ($\theta=0.00$) at D12S78 (Xia et al. 2000; Wu et al. 2004).

Epidermolytic palmoplantar keratodermad (EPPK) is an autosomal dominantly inherited disease. Lu et al. (2003) studied a family from Shandong, China, having patients suffering from EPPK with a unique symptom—knuckle pads. They noticed that both the hyperkeratosis and knuckle pads in the Chinese family were friction related. Candidate gene analysis was carried out using linkage analysis and direct sequencing. A novel L160F mutation in keratin 9 was found and its effects on the secondary structure of keratin 9 were studied. They predicted that the L160F mutation is also responsible for the knuckle pads in the family. Their study provides a new clue for the study of the function of keratin 9.

Primary erythermalgia is a rare autosomal dominant disease characterized by intermittent burning pain with redness and heat in the extremities. A previous study established the linkage of primary erythermalgia to a 7.94 cM interval on chromosome 2q, but the causative gene was not identified. Yang et al. (2004a) performed linkage analysis in a Chinese family with primary erythermalgia and sequenced the mutations in the two candidate genes, SCN9A and GCA, in the family and a sporadic patient. Linkage analysis yielded a maximum LOD score of 2.11 for both markers D2S2370 and D2S330. Based on critical recombination events in two patients in the family, they further limited the genetic region to 5.98 cM between D2S2370 and...
D2S2345. They then identified two missense mutations in SCN9A in the family (T2573A) and the sporadic patient (T2543C). These data suggest that mutations in SCN9A cause primary erythromelalgia. SCN9A, encoding a voltage-gated sodium channel α subunit predominantly expressed in sensory and sympathetic neurons, may play an important role in nociception and vasomotor regulation.

Dyschromatosis symmetrica hereditaria (DSH) is a hereditary skin disease characterized by the presence of hyper- and hypopigmented macules on extremities and face. The gene, or even its chromosomal location, for DSH has not yet been identified. In a study by Xing et al. (2003), two Chinese families with DSH were identified and subjected to a genome-wide screen for linkage analysis. Two-point linkage analysis for pedigree A (maximum LOD score \(Z(\text{max}) = 7.28 \) at recombination fraction \(\theta = 0.00 \)) and pedigree B (\(Z(\text{max}) = 2.41 \) at \(\theta = 0.00 \)) mapped the locus for DSH in the two families to chromosome 8q. Subsequent multipoint analysis of the two families also provided additional support for the DSH gene being located within the region 8q24, have been identified as the genes responsible for BFNC. By linkage and mutation analyses of KCNQ2 gene, Tang et al. (2004) found a novel frameshift mutation of KCNQ2 gene, 1931delG, in a large Chinese family with BFNC. This mutation is located in the C-terminus of KCNQ2, in codon 644, predicting the replacement of the last 201 amino acids with a stretch of 237 amino acids showing a completely different sequence. An unusual clinical feature of this family is that the seizures of every patient did not remit until 12–18 months.

Direct sequencing of exons 3–35 and the exon–intron boundaries of the CACNA1H gene was conducted in 118 childhood absence epilepsy patients of Han ethnicity recruited from North China. Sixty-eight variations have been detected in the CACNA1H gene and among them, 12 were missense mutations and found only in 14 out of 230 unrelated controls. The identified missense mutations occurred in the highly conserved residues of the T-type calcium channel gene. These results suggest that CACNA1H might be an important susceptibility gene involved in the pathogenesis of childhood absence epilepsy (Chen et al. 2003a).

4. HOW TO SIMPLIFY THE COMPLEXITY OF DISEASES: GENES, GENES, GENES...

The molecular studies of complex disorders in China began in early 1990s. In the beginning of the new century, the study of complex disorders in China showed a new look. An integrated programme consisting of genome-wide linkage analysis and
multipoint linkage-disequilibrium analysis was set up to track down susceptibility genes for complex polygenic diseases. Owing to the gratifying genetic resources in China and novel biotechnologies used for work on the HGP, researchers have achieved several unique successes in studying complex disorders and publications of their work in well-known peer-reviewed journals have rapidly been increasing.

(a) Diabetes

Diabetes mellitus or diabetes can be divided into two types, type I and type II. Type I diabetes mellitus is characterized by the marked inability of the pancreas to secrete insulin owing to autoimmune destruction of the beta cells. Type II (non-insulin-dependent) diabetes, which represents 90% of all diabetes, is characterized by peripheral insulin resistance with an insulin-secretory defect that varies in severity. For type II diabetes to develop, both defects must exist: all overweight individuals have insulin resistance, but only those with an inability to increase beta-cell production of insulin develop diabetes. Type II diabetes is a highly heterogeneous multifactorial disease with both genetic and environmental determinants and an uncertain mode of inheritance. At present, there are 143 million people with the disease and more than 15 million diabetic patients in China. In addition, the prevalence of diabetes is still increasing. The belief that type II diabetes has strong genetic determinants is based on several lines of evidence, including the high concordance rate among twins, the marked difference in disease rate between populations and the close correspondence between admixture rate and disease prevalence in hybrid populations. In addition, there are evidences for major gene(s) influencing diabetes or its specific clinical manifestations, such as glucose concentration, 2 h postprandial insulin level and age at onset of diabetes. However, the mode of inheritance of type II diabetes appears to vary across populations, suggesting a complex genetic mechanism underlying the disease. In 2001, a genome-wide scan was performed by Luo et al. (2001) to search for the type II diabetes susceptibility genes in a Chinese population. They studied 102 families (478 family members), who were Chinese Hans residing in east and southeast China, including 282 diabetic patients; among them, 142 independently affected sib pairs were available for genotyping. A total of 247 fluorescence-labelled microsatellite markers, with an average resolution of 15 cM, were amplified. GENEHUNTER was used for the non-parametric linkage (NPL) analyses. Two loci on chromosome 9, D9S171 and D9S175, showed suggestive evidence for linkage, with an NPL score of 3.286 and 2.939, respectively, and a p-value of 1.19×10^{-4} and 4.47×10^{-4}, respectively. A locus on the long arm of chromosome 20, D20S196, showed a rise in the NPL score (from 1.517 to 2.922) and a corresponding decrease in the p-value from 0.04 to 6.5×10^{-4} when families with lower body mass index (BMI) were analysed alone. Other loci with weaker evidence for linkage were also observed. Their results suggest that chromosome 9 contains genes involved in the susceptibility to type II diabetes in an eastern and southeastern Chinese Han population, and chromosome 20 could hide genes linked to type II diabetes in families with a lower BMI. Other regions could also hide susceptibility genes with minor effects.

Through an autosomal genomic scan, Zhao et al. (2005) identified four regions on chromosome 1 showing evidence of a link to type II diabetes in the northern Chinese Han population. Du et al. (2001) also conducted a genome-wide scan in a northern Chinese population to identify type II diabetes susceptibility genes and found that 1p36.3-1p36.23 region, spanning a long range of 16.9 cM, may contain multiple susceptibility genes. To identify the susceptible gene(s) in this region, 23 SNPs located in 10 candidate genes in the mapped region were chosen from public SNP domains with bioinformatic methods and the single base extension method to genotype the loci for 192 sporadic type II diabetes patients and 172 normal individuals, all with Han ethnic origin, using a case-control study. The haplotypes with significant difference in the gene(s) were further analysed. Among the 23 SNPs, eight were found to be common in the Chinese Han population. Allele frequency of one SNP, rs436045 in the protein kinase C/ezetastigene (PRKCZ), was statistically different between the case and control groups (p<0.05). Furthermore, haplotypes at five SNP sites of the PRKCZ gene were identified. Thus, the PRKCZ gene may be associated with type II diabetes in the Han population in North China. The haplotypes at five SNP sites in this gene may be responsible for this association. Liu et al. (2003) studied co-inheritance of specific HSPG and ApoE genotypes in the development of type II diabetic nephropathy in Chinese samples and found that co-inheritance of the T allele of HSPG/E2 allele of ApoE confers a high risk of type II diabetes mellitus progression to diabetic nephropathy in them.

(b) Hypertension

Hypertension is persistent abnormally high blood pressure (BP) which affects 1 billion people worldwide and is implicated in 7.1 million deaths each year from ischaemic heart disease and stroke. It is clear from family and epidemiological studies that hypertension arises from a complex interplay between genetic and environmental lifestyle exposures, including dietary sodium intake, excess alcohol consumption and body weight. In addition, twin studies and segregation analyses have shown that between one-third and one-half of the inter-individual variation of BP is heritable (Lifton et al. 2001; Mein et al. 2004). To identify chromosome regions containing hypertension susceptibility genes in the Chinese population, a three-stage study was carried out in their siblings ascertained through outpatient clinics. In the first stage, 283 affected sib pairs from 79 nuclear families were subjected to a genome-wide scan with 240 microsatellite marker loci. The second stage focused on chromosome 2 with additional markers resulting in an average distance of 5 cM and used an independent sample of 637 affected sib pairs from 161 families. In the third stage, a fine-scale mapping study on the suggestive region was performed in an independent set of 777 affected sib pairs from 106 families. Fourteen

Phil. Trans. R. Soc. B (2007)
markers were used with an average distance less than 2 cm. NPL analyses, parametric linkage analyses and transmission–disequilibrium tests were used to assess the evidence for linkage and association. Three markers (D2S168 at 27.06 cm, D2S151 at 152.04 cm and D2S142 at 161.26 cm) on chromosome 2 with suggestive linkage to hypertension susceptibility genes were identified in the genome-wide scan. In stage II, the suggestive region around D2S151 and D2S142 was replicated, while the linkage around D2S168 was not. In the stage III fine-scale mapping study, multipoint linkage analyses showed LOD scores greater than 2.0 throughout a region between 157.16 and 162.46 cm (all \(p < 0.001 \)), with a maximum peak of 2.24 (\(p = 0.00067 \)) at 160.52 cm. The authors also observed a NPL Z-score peak of 3.27 at 157.55 cm (\(p = 0.00086 \)). These results of a suggestive region on chromosome 2q14–q23 were consistent between each of the three studies. Interestingly, this region overlaps a syntenic region that contains BP quantitative trait loci identified in the rat models of hypertension. These data suggest that the region near D2S142 and D2S151 deserves to be further screened for hypertension susceptibility genes (Zhu et al. 2001). To examine the linkage of qualitative and BP quantitative traits in essential hypertension with these genomic regions in a large sample of Chinese hypertensive families, Ge et al. (2003) performed a genetic analysis on 148 randomly ascertained families containing 328 affected sib pairs, grouped into two geographically distinct subsets. Five highly informative microsatellite markers (D2S151, D2S142, D5S2090, D5S413 and D5S2013) were genotyped and linkage analyses were performed with different genetic models. They did not observe consistent evidence for excessive allele sharing identity by descent in either of the qualitative or the quantitative test. However, higher LOD scores were found at D5S2013 in North Group subset with Haseman–Elston and maximum-likelihood (ML) variance (no dominance variance (NDV)) algorithms. With the ML (NDV) algorithm, the LOD was 1.410 for diastolic BP at this locus, although it was not statistically significant. These findings provide no evidence to support a significant linkage of 2q14–q23 or 5q32 with essential hypertension. These findings provide no evidence to support a significant linkage of 2q14–q23 or 5q32 with essential hypertension. Yang et al. (2003) used two different weakly parametric linkage tests, sib-pair linkage (SAGE/SIBPAL2) and pedigree-based (SOLAR) approaches, to estimate the quantitative or qualitative contribution of variation at the four candidate genes or their near genomic regions to BP and essential hypertension. Their results also found that the LPL gene may influence individual BP variation in the Chinese population. Through family-based association analyses using the quantitative and sib-transmission/disequilibrium tests (QTDT and Sib-TDT), Xu (Xu et al. 2004b) found that angiotensin-converting enzyme (Schunkert et al. 1994) insertion/deletion polymorphism might play a role in the development of obesity and hypertension, which are closely linked to cardiovascular risk.

(c) Studies on schizophrenia, autism and Parkinson’s disease: a brief introduction

Schizophrenia is a common complex disorder characterized by psychosis, cognitive dysfunction and negative symptoms, whose aetiology involves interactions between both genetic and environmental vulnerability factors. Best supported schizophrenia loci include 1q21–q22, 1q42, 5q21–q33, 6p24–p22, 6q21–q25, 8p22–p21, 10p15–p11, 10q25–q26, 13q32–q34 and 22q11–q13 (Sanders et al. 2004). Liu et al. (2004b) reported a result obtained in the study of 547 schizophrenia cases and 536 controls in the Chinese population. Six SNPs were genotyped at and around the enzyme d-amino acid oxidase (DAAO) locus (Chumakov et al. 2002; Schumacher et al. 2004), covering a 10 kb region entirely encompassing the complementary DNA sequences of DAAO. They found statistically significant differences in allele distributions on one marker: SNP rs3741775 (\(p = 0.000001 \)). In the haplotype analysis based on the information of linkage-disequilibrium block across this gene locus, they demonstrated a highly significant
Dissection of disease pathogenesis in genomic era in China

Y. Shen et al.

Association between schizophrenia and a DAAO haplotype, which therefore provides an independent statistical support for association of the DAAO gene with schizophrenia and indicates that the DAAO gene may play a significant role in the etiology of schizophrenia in the Chinese Han population. Case-control studies also revealed the relationship between the metabolotropic glutamate receptor 3 gene (Chen et al. 2005b), frizzled 3 (FZD3; Zhang et al. 2004) and ZDHHC8 on 22q11 (Chen et al. 2004) and schizophrenia in the Chinese population.

Since the conventional approaches to study of polygenic disease have shown some limitations in several aspects, Xu et al. (2004a) had recently introduced a novel idea into the genetic analysis of paranoid schizophrenia. Instead of examining one candidate at a time, an entire dopamine (DA) metabolism pathway is tested. In this work, 85 SNPs present in 23 genes for the DA metabolism pathway were genotyped in patients with paranoid schizophrenia and controls. Their study focused on investigating the combined effect of schizophrenia susceptibility genes. The strategy consists of systematic and thorough study of genes, strict clinical diagnosis and subgroups of patients, and new mathematical methods for genotype-phenotype association study. Their work showed an association of the combination patterns of network-related gene SNPs with schizophrenia. To capture the combined effects of susceptibility genes from the data warehouse, they developed two novel multilocus-based analysis methods, named 'potential effective SNP combination pattern' and 'potential effective dynamic effects'. Based on this strategy, they found that three genotype combinations were associated with a susceptibility to schizophrenia. These results were also validated in an independent cohort sample consisting of 95 paranoid schizophrenic family trios.

Apoptosis is thought to play a role in neuronal pathology in schizophrenia. Recently, the GSN gene was reported to have anti-apoptotic properties. In a genome-wide expression analysis on schizophrenia, GSN was also found to be significantly downregulated in schizophrenia. All the hints suggest that GSN is a novel candidate gene in the occurrence of schizophrenia. Xi et al. (2004) genotyped three SNPs around the GSN locus in 493 sets of the Chinese Han trio sample using allele-specific PCR. A weak association or a marginally positive result was detected.

Autism is a complex brain disorder that often inhibits a person’s ability to communicate, respond to surroundings and form relationships with others. Several genome-wide screens indicated that chromosome 7q was linked to autistic disorder. FOXP2, located on 7q31, encodes a putative transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain. It is one of the members of the forkhead family who are known to be key regulators of embryogenesis. A point mutation at a highly conserved residue within the forkhead domain co-segregated with affected status in the KE family, which was a unique three-generation pedigree with a severe speech and language disorder, and FOXP2 was directly disrupted by a translocation in an individual who had similar deficits as those of the KE family. Several studies have investigated the role of FOXP2 polymorphisms in autism and none of them found positive association. Gong et al. (2004) performed a family-based association study of three SNPs of FOXP2 in 181 Chinese Han trios using the analyses of transmission/disequilibrium test (TDT) and haplotype. They found a significant association between autistic disorder and one SNP, as well as with specific haplotypes formed by this SNP with two other SNPs they investigated. Their findings suggest that the FOXP2 gene may be involved in the pathogenesis of autism in the Chinese population.

Parkinson’s disease is chronic, progressive neurodegenerative movement disorder characterized by an insidious onset with slowing of emotional and voluntary movement, muscular rigidity, postural abnormality and tremor. NR4A2, encoding a member of nuclear receptor superfamily, is essential for the differentiation of the nigral dopaminergic neurons. To determine whether NR4A2 is a susceptibility gene for Parkinson’s disease, Le et al. (2003) carried out genetic analyses in 201 individuals affected with Parkinson’s disease and 221 age-matched unaffected controls. They identified two mutations in NR4A2 associated with Parkinson’s disease (−291Tdel and −245T→G), which map to the first exon of NR4A2 and affect one allele in 10 out of 107 individuals with familial Parkinson’s disease, but not in any individuals with sporadic Parkinson’s disease (n=94) or in unaffected controls (n=221). The age at onset of disease and clinical features of these 10 individuals were not different from those of individuals with typical Parkinson’s disease. The mutations resulted in a marked decrease in NR4A2 messenger RNA (mRNA) levels in transfected cell lines and in lymphocytes of affected individuals. Additionally, mutations in NR4A2 affect transcription of the gene encoding tyrosine hydroxylase. These data suggest that mutations in NR4A2 can cause dopaminergic dysfunction, associated with Parkinson’s disease.

Coronary heart disease

Coronary heart disease (CHD) (or coronary artery disease) is a narrowing of the small blood vessels that supply blood and oxygen to the heart, and is one of the leading causes of death in China (He et al. 2005). Serum C-reactive protein (CRP) has been strongly implicated in the pathogenesis of CHD. Chen et al. (2005a) investigated the association between the gene coding for CRP and CHD in the ethnic Han population of China. Two polymorphisms of −717A/G and +1247A/G of the CRP gene were identified by direct sequencing of genomic DNA derived from 48 randomly selected patients and were further investigated for associations with CHD in 619 male patients and 615 age-matched male normal controls. The frequency of A allele carriers of −717A/G polymorphism was significantly higher in patients than in controls by univariate analysis. After controlling for other risk factors, the association between this polymorphism and CHD remained significant by multivariate logistic regression analysis. Individuals carrying the −717A allele had an approximately 6.8-fold higher risk of developing CHD. Haplotype analysis confirmed the results of individual
polymorphism analyses. However, the resolution of effect size is poor, which may be due to the deficiency in sample size of this study. Neither polymorphism was observed to have an influence on serum CRP level. Since the frequency difference between CHD cases and controls for the \(K_{717A} \) allele carriers is only 2.28\% and homozygosity for \(K_{717G} \) occurs in only 1.78\% of subjects, \(K_{717A/G} \) polymorphism is not a major determinant of population genetic risk of CHD in the Chinese population. The association of this polymorphism with CHD supports the belief that carriers of \(K_{717A} \) allele of the CRP gene are genetically predisposed to CHD in the Chinese Han population, and it remains possible that this polymorphism is in disequilibrium with one as yet unidentified functional polymorphism in the vicinity (Chen et al. 2005).

5. HOW TO UNRAVEL THE MYSTERY OF CANCER: DISSECTING THE CANCER GENOME
Cancer represents the leading cause of death in China. After three decades of rapid advances, cancer research has generated a rich and complex body of knowledge, revealing cancer to be a disease involving dynamic changes in the genome. The foundation has been set in the discovery of mutations that produce oncogenes with dominant gain of function and tumour suppressor genes with recessive loss of function; both classes of cancer genes have been identified through their alteration in human and animal cancer cells and by their elicitation of cancer phenotypes in experimental models (Hanahan & Weinberg 2000; He et al. 2005; figure 5).

(a) Hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is a cancer that arises from hepatocytes, the major cell type of the liver, and is a leading cause of death worldwide, especially in Asia and Africa. To understand the genetic mechanisms underlying the progression of HCC metastasis, differences in genomic alterations between 10 pairs of primary HCC tumours and their matched metastatic lesions were analysed by comparative genomic hybridization. Several chromosomal alterations including loss of 8p, 4q, 17p and 19p, gain of 5p and high-level amplification of 1q12–q22 were detected in two or more cases. The most significant finding is the loss of 8p which was detected in eight metastatic tumours, but only in three corresponding primary tumours (\(p=0.03 \)). This result suggests that the deletion of chromosome 8p might contribute to the development or HCC metastasis. Another interesting result is the detection of a minimum high-level amplification region at 1q12–q22 in HCC. This result provides a candidate amplification region in HCC for further study to identify amplified oncogenes related to the development or progression of HCC. Finally, this study provides a practicable model to detect specific genetic alterations related to the tumour metastasis by comparing the primary tumour and its corresponding metastatic lesion using the comparative genomic hybridization technique (Qin et al. 1999).

Previous studies have shown that there is a high frequency of loss of heterozygosity (LOH) on chromosome 17p13.3 in HCC (Fujimori et al. 1991). The minimum region of LOH on chromosome 17p13.3 in HCC has been defined within the region between D17S643 and D17S1574. Moreover, D17S926 in the minimum region of LOH has the highest frequency of LOH and its sequencing analysis has been accomplished. In this region, 6 out of 13 novel genes have been characterized.

(b) Figure 5. Age-standardized mortality for the five leading causes of death (a) among study participants who were rural or urban residents and (b) from malignant neoplasms.
normal liver tissues into human hepatoma cells and 22,926 cDNA clones into mouse NIH 3T3 cells. Based on the results of colony formation in hepatoma cells and foci formation in NIH 3T3 cells, 3806 cDNA species (8237 clones) were found to possess the ability of either stimulating or inhibiting cell growth. Among them, 2836 (6958 clones) were known genes, 372 (384 clones) were previously unrecognized genes and 598 (895 clones) were unigenes of uncharacterized structure and function. A comprehensive analysis of the genes and the potential mechanisms for their involvement in the regulation of cell growth is provided. The genes were classified into four categories: (i) genes related to the basic cellular mechanism for growth and survival; (ii) genes related to the cellular microenvironment; (iii) genes related to host-cell systemic regulation; and (iv) genes of miscellaneous function. The extensive growth-regulatory activity of genes with such highly diversified functions suggests that cancer may be related to multiple levels of cellular and systemic controls. This study provides a direct genome-wide functional screening method. It offers a better understanding of the basic machinery of oncogenesis, including previously undescribed systemic regulatory mechanisms, and also provides a tool for gene discovery with potential clinical applications (Wan et al. 2004).

(b) Oesophageal carcinoma

Oesophageal cancer is one of the prevalent cancers in northern China. In order to explore the mode of inheritance of oesophageal cancer in a moderately high-incidence area of northern China, Zhang et al. (2000b) conducted a pedigree survey on 225 patients affected by oesophageal cancer in Yangquan, Shanxi Province. Segregation analysis was performed using the REGTL program of S.A.G.E. Their results showed that Mendelian autosomal recessive inheritance of a major gene that influences susceptibility to oesophageal cancer provided the best fit to the data. In the best-fitting recessive model, the frequency of the disease allele was 0.2039. There was a significant sex effect on susceptibility to the disease. The maximum cumulative probability of oesophageal cancer among males with the AA genotype was 100%, but among females it was 63.5%. The mean age at onset for both men and women was 62 years. The age-dependent penetrance for males with the AA genotype at 60 and 80 years of age were 41.6 and 95.2%, respectively, whereas for females they were 26.4 and 60.5%, respectively. Antigen titre was included as a covariate, the LOD score of linkage to the D4S405 marker on chromosome 4 was 4.2 at D4S405 and D4S3002, respectively, which is positioned 4.5 cM away from D4S405. When EBV membrane antigen titre was included as a covariate, the LOD score of linkage to the D4S405 marker on chromosome 4 was 4.5 cM away from D4S405. When EBV antibody titre was included as a covariate, the LOD scores reached 4.70 and 5.36 for D4S405 and D4S3002, respectively, which is positioned 4.5 cM away from D4S405. When EBV antibody titre was included as a covariate, the LOD scores reached 4.70 and 5.36 for D4S405 and D4S3002, respectively. When EBV antibody titre was included as a covariate, the LOD scores reached 4.70 and 5.36 for D4S405 and D4S3002, respectively. These findings provide evidence of a major susceptibility locus for NPC on chromosome 4 in a subset of families. This group further screened all the genes in this region, with a focus on exons, promoters and the exon–intron boundary to identify NPC-associated mutations or functional variants. They found a novel gene (LOC344967) with a SNP –32G/A in the promoter region. This gene encodes a member of the acyl-CoA thioesterase family that plays an important role in fatty acid metabolism and is involved in the progression of various types of tumours. The –32A variant was found co-segregated with the disease phenotype in the NPC pedigrees that they previously used for the linkage analysis.
study. Moreover, this 32A variant creates an activator protein (AP-1)-binding site in the transcriptional regulatory region of LOC344967, which significantly enhances the binding of AP-1 to the promoter region and the transcription activity of the promoter in vivo. Moreover, the expression of LOC344967 was significantly upregulated at both mRNA and protein levels in NPC cells sharing the 32A/G genotype compared with those cells with the 32G/G genotype. Collectively, these results provide evidence that the 32A variant is a functional sequence change and may be related to NPC susceptibility in the families studied (Jiang et al. 2006). Xiong et al. (2004) collected samples from 18 families at high risk of NPC from the Hunan province in southern China, genotyped with a panel of polymorphic markers on short arms of chromosomes 3, 9, and 4p19.2–q12. A locus on 3p21 was identified to link to NPC with a maximum logarithm of odds for linkage score of 4.18. Fine mapping located the locus to a 13.6 cM region on 3p21.31–21.2, where a tumour suppressor gene cluster resided. These results identified a novel locus for NPC and provided a map location for susceptibility gene candidates, but not on the MHC region. Polymorphisms of genes for carcinogen metabolism (CYP2E1), detoxification (GSTM1) and DNA repair (XRCC1 and hOGG1) were also reported to be associated with increased risk of NPC (Hildesheim et al. 1997; Nazar-Stewart et al. 1999; Cho et al. 2003).

The genetic, environmental and viral causative factors, either acting alone or in combination, would lead to multiple genetic and epigenetic alterations. By the comprehensive genome-wide studies, multiple genetic defects have been identified in this EBV-associated cancer. Consistently high frequencies of genetic losses are observed on chromosomes 3p, 9, 11q, 13q, 14q and 16q, while recurrent chromosomal translocations and point mutation are the major mechanisms in leukaemia which lead to production of oncogenes with dominant gain of function and tumour suppressor genes with recessive loss of function. Mutations in transcription factors, which impair haemopoietic differentiation and subsequent apoptosis, and mutations in protein tyrosine kinases, which confer a proliferative and/or survival advantage to HSPCs, represent two classes of the most frequently detected genetic anomalies (Kelly & Gilliland 2002).

Leukaemia is also another common cancer in China. In 1993, Chen et al. (1993a,b) reported an unusual karyotype 46,XY,t(11;17)(q23;21) without apparent rearrangement of chromosome 15 in a patient with acute promyelocytic leukaemia (APL). Similar to t(15;17) APL, all-trans retinoic acid treatment in this patient produced an early leucocytosis which was followed by a myeloid maturation, but the patient died too early to achieve remission. A rearrangement between the RARx on 17q22 gene and a newly discovered zinc finger gene named PLZF (promyelocytic leukaemia zinc finger) on 11q23.1 was demonstrated. In a subsequent work, a 201 kb genomic DNA region containing the entire PLZF gene was sequenced (Zhang et al. 1999). PLZF contains six exons and five introns, and the exon organization corresponds well with protein domains. There are at least four alternative splicings (AS-I, -II, -III and -IV) within exon 1. AS-I could be detected in most tissues tested, whereas AS-II, -III and -IV were present in the stomach, testis and heart, respectively. Although donor and acceptor splicing signals at exon–intron boundaries for AS-I and exons 1–6 were classical (gt-ag), AS-II, -III and -IV had atypical splicing sites. These alternative splicings, nevertheless, maintained the ORF and may encode isoforms with the absence of important functional domains. In mRNA species without AS-I, there is a relatively long 5’ UTR of 6.0 kb. A TATA box and several transcription factor-binding sites were found in the putative promoter region upstream of the transcription start site. PLZF is a well-conserved gene from Caenorhabditis elegans to human. PLZF paralogous sequences are found in the human genome (Zhang et al. 1999). PLZF encodes a potential transcription factor containing nine zinc finger motifs related to the Drosophila gap gene Kruppel and is expressed as at least two isoforms which differ in the sequences encoding the N-terminal region of the protein. Partial exon/intron structure of the PLZF gene flanking the break point on chromosome 11 was also established and the break point within the RARx gene was mapped approximately 2 kb downstream of the exon encoding the 5’ untranslated region and the unique A2 domain of the RARx 2 isoform. These results demonstrated for the first time the association of a variant chromosomal translocation involving the RARx gene with APL, further implicating the RARx in leukaemogenesis and also suggesting an important role for PLZF, as well as

(d) Leukaemia

Leukaemia, a group of haematological malignancies characterized by abnormal proliferation, decreased apoptosis and blocked differentiation of haemopoietic stem/progenitor cells (HSPCs), is a disease involving dynamic change in the genome. Chromosomal translocation and point mutation are the major mechanisms in leukaemia which lead to production of oncogenes with dominant gain of function and tumour suppressor genes with recessive loss of function. Mutations in transcription factors, which impair haemopoietic differentiation and subsequent apoptosis, and mutations in protein tyrosine kinases, which confer a proliferative and/or survival advantage to HSPCs, represent two classes of the most frequently detected genetic anomalies (Kelly & Gilliland 2002).
retinoic acid and its receptors in myeloid maturation (Chen et al. 1993a, b). In addition, this group was not only among the first to clone PML–RARα and identify the variant isoforms of PML–RARα (Chen et al. 1992; Tong et al. 1992; Geng et al. 1993), but also provides the molecular basis for the formation of PML–RARα variants (Gu et al. 2002). They are also involved in the identification and functional studies of several other leukaemic fusion genes, including NUP98–HOXA9 (Nakamura et al. 1996), NUP98–HOXC11 (Gu et al. 2003), MLL–EEN (So et al. 1997; Liu et al. 2004a) and other genes.

To further address the molecular basis of leukaemia in a systematic way, the Leukemia Genome Anatomy Project (LGAP) has been launched in Shanghai Institute of Hematology (SIH) led by Zhu Chen (Zelent et al. 2005). This project systematically surveys the abnormalities in transcription factors and protein tyrosine kinases using functional genomics technologies and had achieved some progress in several disease models. For example, to explore the genetic abnormalities that cooperate with AML1–ETO (AE) fusion gene to cause acute myeloid leukaemia (AML) with t(8;21), Wang et al. (2005) screened a number of candidate genes and identified 11 types of mutations in C-KIT gene (mC-KIT), including six previously undescribed ones among 26 out of 54 (48.1%) cases with t(8;21). To address a possible chronological order between AE and mC-KIT, they showed that, among patients with AE and mC-KIT, most leukaemic cells at disease presentation harboured both genetic alterations, whereas in three such cases investigated during complete remission, only AE, but not mC-KIT, could be detected by allele-specific PCR. Therefore, mC-KIT should be a subsequent event on the basis of t(8;21). Furthermore, induced expression of AE in U937-A/E cells significantly upregulated mRNA and protein levels of C-KIT. This may lead to an alternative way of C-KIT activation and may explain the significantly higher C-KIT expression in 81.3% of patients with t(8;21) than in patients with other leukaemias. These data strongly suggest that t(8;21)
AML follows a stepwise model in leukaemogenesis, i.e. AE represents the first, fundamental genetic hit to initiate the disease, whereas activation of the C-KIT pathway may be a second but also a crucial hit for the development of a full-blown leukaemia (figure 6).

Besides these major types of cancer in China, several genes related to other types of cancer are also investigated. For example, tamoxifen, a selective oestrogen receptor modulator, has been used in the treatment of all stages of hormone-responsive breast cancer. However, tamoxifen shows partial oestrogen activity in the uterus and its use has been associated with an increased incidence of endometrial cancer. The molecular explanation for these observations was not known. Wu et al. (2005) show that tamoxifen and oestrogen have distinct but overlapping target gene profiles. Among the overlapping target genes, they identify a paired-box gene, PAX2, which is crucially involved in cell proliferation and carcinogenesis in the endometrium. Their experiments show that PAX2 is activated by oestrogen and tamoxifen in endometrial carcinomas but not in normal endometrium, and that this activation is associated with cancer-linked hypomethylation of the PAX2 promoter. Xiangyin Kong’s group showed that mutations in the CYLD gene were the genetic basis for three different Chinese families with multiple familial trichoeplithelioma (Zheng et al. 2004). Chinese scientists have revealed that the genetic polymorphisms of some genes, such as those encoding MMP-2 (Miao et al. 2003), methylenetetrahydrofolate reductase (Shen et al. 2005) and some cytokines (IL-8, IL-10 and TNFα; Lu et al. 2005), could play important roles in developing gastric cancer in the Chinese population.

6. TRANSCRIPTOMICS AND PROTEOMICS RESEARCH IN CHINA

The genome is only a source of information. In order to function, it must be expressed. The essential steps of gene expression include the transcription of genes to produce RNA and the translation of RNA into proteins. The regulation of gene expression is the key process for development and for adaptation to changes in environmental conditions and thus for survival. Transcriptomics and proteomics describe the process of transcription and translation in a genome-wide range, thus providing a systematical insight into the genetic information flow.

A comprehensive knowledge of the transcriptome and proteome has become increasingly important for understanding complex diseases. Recently, Chinese scientists used the improved platform technology to address the pathogenesis of these diseases, especially different kinds of cancers. The findings from these transcriptomic and proteomic analyses provide new insights for developing improved interventions for disease (Han et al. 2003).

(a) Transcriptome analysis for medicine

Transcriptome analysis of haemopoiesis was the very first case of success in that direction conducted in China. To a better understanding of the regulation of normal and pathological haemopoiesis, Zhu Chen and his colleagues in the SIH chose specific CD34-positive HSPCs as a model to initiate the first transcriptome project in China. Through the EST sequencing strategy, gene expression profiles of CD34-positive cells, derived from human umbilical cord blood, bone marrow and leukaemia, have been established (Mao et al. 1998; Gu et al. 2000). Based on this EST project, Chen’s group also cloned 300 previously undefined genes expressed in CD34+ HSPCs (Zhang et al. 2000a). This is a pioneering milestone in transcriptomic study in China. To gain further molecular insight into the development of the haemopoietic system, Fuchu He and his colleagues of Beijing Institute of Radiation Medicine studied the gene expression profile of the 22-week foetal liver by generating ESTs and analysing the compiled expression profiles of liver at distinct developmental stages (Yu et al. 2001).

The hypothalamus and pituitary, together with the adrenals, constitute the major neuroendocrine axis (H–P–A axis) which is responsible for the maintenance of homeostasis and the response to the perturbations in the environment. Hu et al. (2000) established a primary gene expression profile for the human H–P–A axis by generating a large number of ESTs, followed by bioinformatics analysis. This work also contributed 200 full-length cDNAs of novel genes and enhanced the insights into the complexity of intercellular communications, and the physiology and pathology of the human neuroendocrine system.

To address the pathogenesis of HCC, Xu et al. (2001b) first reported a comprehensive characterization of gene expression profiles of hepatitis B virus-positive HCC through a large dataset of EST clusters from HCC and non-cancerous liver samples, which were then applied to a cDNA microarray. Integrated data indicated that many genes involved in cell-cycle regulation such as cyclins, cyclin-dependent kinases and cell-cycle negative regulators were deregulated in most patients with HCC. Interestingly, the gene expression pattern of HCC might represent a status of dedifferentiation of the malignant hepatocytes. Notably, the altered transcriptome profiles in HCC could be correlated to a number of chromosome regions with amplification or LOH, providing one of the underlying causes of the transcription anomaly of HCC. Gengxi Hu also used a cDNA array representing 14 000 cDNA clusters derived from EST sequencing to study the expression profiles in paired HCC and non-tumorous liver tissues (Xu et al. 2001a). It was conspicuous that 21 out of 38 downregulated genes in HCC were reportedly regulated by a group of liver-enriched transcription factors, whereas 12 out of 36 upregulated genes studied previously were involved in protein translation. Furthermore, to characterize the molecular signature of metastatic HCC, Ye et al. (2003) analysed the expression profiles of HCC samples without or with intra-hepatic metastases through the supervised machine-learning algorithm. Their results indicated that the gene expression signature of primary HCCs with accompanying metastasis was very similar to that of their corresponding metastases, implying that genes favouring metastasis progression were initiated in the primary tumours. Among them, osteopontin was identified as a lead gene in the signature, where an osteopontin-specific antibody

Downloaded from http://rstb.royalsocietypublishing.org/ on May 22, 2017
effectively blocked HCC cell invasion in vitro and inhibited pulmonary metastasis of HCC cells in nude mice, suggesting that osteopontin could be considered as both a diagnostic marker and a potential therapeutic target for metastatic HCC.

Based on the transcriptomics studies, several novel genes related to the HCC were further investigated. Xu et al. (2003) identified a liver-specific gene that encodes a novel zona pellucida (ZP) domain-containing protein named liver-specific ZP domain-containing protein (LZP). Interestingly, human LZP is expressed specifically in liver in the 23 tissues examined, and its mouse counterpart was detected at a very early stage during embryo development. Importantly, LZP is downregulated in HCC and HCC cell lines; meanwhile, the decreased level of hLZP mRNA could, at least in some HCC samples, be related to the methylation status of the putative LZP promoter. Huang et al. (2003) identified a specific splicing variant (SVH-B) of SVH, a novel human armadillo repeat protein that is upregulated in HCCs. SVH-B may accelerate cell growth of the HCC cell line Huh7 both in vitro and in vivo, possibly through reducing ERK1 activation and inhibition of the NF-kB pathway.

To identify genes that are differentially expressed in human ESCC, Luo et al. (2004) analysed gene expression profiles in ESCC using cDNA microarray. The resulting data revealed that genes involved in squamous cell differentiation were coordinately downregulated, including genes for annexin I, small proline-rich proteins, calcium-binding S100 proteins, etc. Interestingly, most of the downregulated genes encoded Ca2+-binding or -modulating proteins that constitute the cell envelope. Moreover, genes associated with invasion or proliferation were upregulated, including genes for fibronectin, cathepsin B and KRT17. The data provide new insights into the role of squamous cell differentiation-associated genes in ESCC initiation and progression. In addition, some deregulated genes in ESCC, such as NMES1 and PTTG, were further shown to be related to ESCC (Zhou et al. 2002, 2005).

7. CONCLUSION AND PERSPECTIVES

We apologize to authors whose distinguished works have not been cited in this review. We would like to say that so far our understanding of the complexity of medicine and the biodiversity of China is still at a relatively early stage and genes underlying complex diseases remain largely unknown. However, tremendous advances in the construction of genomic research platforms and in the dissection of disease pathogenesis have been seen. With great efforts of scientists, we believe that we can further elucidate the genotype of the phenotype. With the functional genomic research, we can further unveil the roles that genes play in disease pathogenesis and design molecular mechanism-based therapies which may ultimately improve clinical outcome of patients.

REFERENCES

Phil. Trans. R. Soc. B (2007)

Gu, B. W. et al. 2003 Major form of NUP98/HOXC11 fusion in adult AML with t(11;12)(p15;q13) translocation exhibits aberrant trans-regulatory activity. Leukemia 17, 1858–1864. (doi:10.1038/leu.2403036)

Hui, A. B. et al. 1999 Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma.
Dissection of disease pathogenesis in genomic era in China

Y. Shen et al.

Phel. Trans. R. Soc. B (2007)

Tong, J. H. et al. 1992 Molecular rearrangements of the MYL gene in acute promyelocytic leukemia (APL, M3) define a breakpoint cluster region as well as some molecular variants. Oncogene 7, 311–316.

Xiao, S. et al. 2001 Dentigenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat. Genet. 27, 201–204. (doi:10.1038/84848)

Phil. Trans. R. Soc. B (2007)

