Instructions to Authors

1. SCOPE AND AIMS
 Philosophical Transactions series B is published monthly, in A4 double-column format. Normally, issues containing the reports of discussion meetings alternate with those containing submitted papers. The Society aims to accept or reject within one month of receipt, and to publish accepted papers within six months of receipt. Papers exceeding 25000 words will only occasionally be accepted; prior consultation with the Editorial Office is recommended before submission of such papers. There are no page charges. Papers must be in English.

2. EDITORIAL AND PRODUCTION PROCEDURE
 Each paper received by the Royal Society is sent to referees; if their reports are favourable and the paper is accepted, authors are advised of any changes required. The Society encourages referees to report expeditiously, and will inform authors of the progress of the paper. However, should authors not receive a report within six weeks, they may contact the Editorial Office.

 The paper is prepared for the printers once the authors have submitted a definitive version after acceptance. The paper is then sent to the printers, who prepare a proof for checking by the authors. Upon return of the authors' proof to the Editorial Office the corrections requested are checked, and the paper then goes to press. Any delays in submitting revised typescripts or in returning marked proofs will delay publication. Authors should respond as rapidly as possible so that the schedule for publishing their papers can be adhered to.

3. SUBMISSION
 Submitted papers must not have been published previously, nor be under consideration for publication elsewhere. In order to give the Royal Society authority to deal with matters of copyright, authors will be asked to assign to the Society the copyright in any article published in the journal. In assigning copyright, authors will not be forfeiting the right to use their original material elsewhere subsequently. This may be done without seeking permission and subject only to normal acknowledgement to the journal. However, it would be appreciated if authors would inform the Society in this event.

 Papers may be submitted (i) to the Editor or (ii) direct to the Editorial Office, the Royal Society, 6 Carlton House Terrace, London SW1Y 5AG. When sending their papers authors may, if they wish, suggest suitable referees, but such suggestions will not necessarily be adopted.

 Three copies of the typescript and all figures should be sent; in the case of papers where there are photographs as well as line drawings, three prints of each photograph should be sent rather than photocopies. The address of the author who will check proofs should be clearly indicated.

4. TYPESCRIPT
 Papers should be submitted initially as typescripts. After a paper has been accepted, and, if necessary, revised typescripts have been sent, authors should submit the final version both on floppy disk (MS-DOS, Macintosh or Amstrad PCW format) and as a typescript.

 Typescripts should be double-spaced, with both margins at least 3 cm, and with all sheets numbered in sequence and securely clipped together. Papers should be concisely written. Each paper must have an abstract (not exceeding 800 words or 5% of the length of the paper, whichever is the less) on separate sheets, and a separate title-page giving the names of the authors and the address or addresses where the work was done. A short title for page-headings should be given on the title page. Legends of figures numbered in sequence as they are to appear in the paper should be given, in double spacing, beginning on a separate sheet at the end of the paper.

 Papers describing experiments with vertebrate animals will be accepted only if the procedures used are clearly described and conform to the British Home Office regulations for avoiding unnecessary suffering to the animals.

5. ILLUSTRATIONS
 Line drawings and half-tone illustrations should be prepared so that they are suitable for reduction to single or double column width (80 or 167 mm respectively). The normal text area is 167 mm x 253 mm, but in exceptional cases the area available for figures can be increased to 182 mm x 257 mm. Half-tone illustrations will be printed within the text.

 Labelling should be added to original of line illustrations before submission if authors have the facilities to produce lettering of suitable quality and size, allowing for reduction during publication. Half-tone originals should be supplied lettered; examples of suitably lettered half-tones are shown overleaf. Light and electron micrographs must have a scale bar. Every copy of the typescript should be supplied with labelled copies of the figures.

 Authors should indicate on an overlay any areas or subjects within a half-tone requiring critical reproduction. Authors' suggestions for reduction factors are welcomed, subject to the constraints of the production process.

6. STYLE
 Papers must conform to the style of the Philosophical Transactions series B in the way in which the headings and sub-headings of separate sections are arranged and the references are cited and listed. The International System of Units (SI) should be used wherever possible. Spelling is that of the Shorter Oxford English Dictionary. Papers that have not been carefully checked by the authors before submission will not be returned.

7. PROOFS AND OFFPRINTS
 A single proof only will be sent to authors for checking. Excessive authors' alterations made on the proof (other than corrections to errors made by the printer) will be charged to authors. Fifty free offprints will be provided; additional offprints may be ordered on the offprint order form, which is sent out with the proof.

[August 1991]
EXAMPLES OF AUTHOR-LETTERED HALF-TONES

▲ Note: (i) the use of scale bars (length defined in the legend); (ii) figure number patches not too close to the edge of each figure; (iii) the use of shadow lettering for labelling, to avoid the need for patches.

◄ Note: (i) the use of white lettering on a dark background and black lettering on a light background; (ii) the self-contained scale bar; (iii) no figure number supplied (it was added by the Society's artist).
Indexes to Volume 334 (B)

Author index

Allen, J. A. See Payne & Allen.
Andrews, P. & Martin, L. Hominoid diet and evolution, 199.
Barton, R. A. See Whiten et al.
Bennett, M. D. & Smith, J. B. Nuclear DNA amounts in angiosperms, 309.
Berrick, A. J. See Lucas et al.
Blumenschine, R. J. Hominid carnivory and foraging strategies, and the socio-economic function of early archaeological sites, 211.
Blumenschine, R. J. & Hawkes et al.
Bowtell, G. & Williams, T. L. Anguilliform body dynamics: modelling the interaction between muscle activation and body curvature, 385.
Butlin, R. K., Ritchie, M. G. & Hewitt, G. M. Comparisons among morphological characters and between localities in the Chorthippus parallelus hybrid zone (Orthoptera: Acrididae), 297.
Byrne, R. W. See Whiten et al.

Carré, C. & Carré, D. A complete life cycle of the calycophoran siphonophore Muggiaea kochi (Will) in the laboratory, under different temperature conditions: ecological implications, 27.
Carré, D. See Carré & Carré.
Conklin, N. L. See Wrangham et al.
Davies, R. E. & Koch, R. H. All the observed universe has contributed to life, 394.
Fernandez, M. See Tutin et al.
Fraser, M. A. See Perry & Fraser.
Fredkin, D. R. & Rice, J. A. On the superposition of currents from ion channels, 347.
Harris, S. See Smith & Harris.
Hawkes, K., O'Connell, J. F. & Blumenschine, R. J. Hominid carnivory and foraging strategies, and the socio-economic function of early archaeological sites, 211.
Henzi, S. P. See Whiten et al.
Hewitt, G. M. See Butlin et al.
Hunt, K. D. See Wrangham et al.
Jones, E. B. G. See Read et al.
King, C. A. See Marshall et al.
Koch, R. H. See Davies & Koch.
Krishnamurthy, V. See Chung et al.
Land, M. F. See Marshall et al.
Lee, P. C. See Foley & Lee.
Martin, J. F. See Radomski et al.
Subject index

abyssal Mollusca, 481.
adenosine, 449.
aerodynamics, 119.
afferents, 85.
anæmia, 271.
anatomy of leaves, 95.
animal flight, 119.
apes, 179.
baseline drift adjustment, 357.
bat, 107.
basic nuclear transmutations, 391.
biosilicification, 149.
bird, 107.
blood CO uptake, 135.
brain energy requirements, 223.
calcium deficiency, 271.
Calophyllum inophyllum (Guttiferae), 95.
carbon monoxide transport, 135.
carboxyhaemoglobin in blood, 135.
central terminals, 85.
cephalothoracic shield formation, 1.
chemical kinetics, CO, 135.
Crustacea, 1.
development, 187.
dietary fibre, 187.
diet, human, 281.
diet, 179, 243, 265.
cyclic GMP, 129.
calculus, 271.
Cathartidae, 271.
carboxyhaemoglobin, 135.
carboxyhaemoglobin in blood, 135.
cosmic nucleosynthesis, 391.
cosmic gamma rays, 391.
control of polymerization, 149.
conidium attachment, 449.
conidium attachment, 449.
conidium attachment, 449.
computer simulation, CO transport, 135.
cone-oid, 187.
Why do some leaves have smooth margins whereas others have a jagged edge? Why do we have corals and other marine invertebrates with symbiotic photosynthetic microbes, but no green vertebrates? Why do those animals that eat plants generally rely on microbes in their guts to digest the cellulose, rather than producing the necessary enzymes for themselves? If the evolution of biotic pollination by angiosperms was the secret of their evolutionary success, why have so many of them (including the grasses) reverted to wind pollination? The contributors to this volume attempt to answer some of these questions, and indeed the broader problem of what do these questions have in common?

How far have the whole complex series of interactions between plants and animals influenced the evolutionary progression of each group? The topics dealt with here range from the fossil evidence for the earliest assault of the arthropods on the first land plants, to biochemical warfare between plant and herbivore, as each group has been driven to respond to the innovations of the other. Vertebrates and insects have, in their different ways, undergone major modifications of their structure, and particularly their mouthparts and gut, to cope with a vegetarian diet. But equally, the impact of browsing and grazing has forced higher plants to modify their programme of growth to cope with losing parts of the whole. This may have been one of the main forces favouring a flexible modular growth programme, rather than a determinate one.

This collection of papers, together with the lively discussion that they provoked, is taken from a Royal Society Discussion Meeting held on 27 and 28 February 1991. It records the state of development of one of the fast-growing areas of biology and brings together such diverse fields as biochemistry, palaeontology, cell biology, mammal and insect behavioural studies, plant development and pollination biology.
What are the regulatory factors that, over the long run, prevent a population from realizing its potential for unbounded increase? How do these regulatory factors combine to produce observed patterns in the relative abundance of species? How do these dynamical factors influence the structure of plant and animal communities? And, ultimately, how does all this add up to determine the number of species, either locally or globally.

The papers in this volume survey recent advances in studies of these questions, emphasizing the integration of empirical studies with ecological theory. Overall, the book has the deliberate aim of shaping an agenda for research, towards a clearer understanding of how many species there are, and why.

Price including packing and postage
£37.50 (U.K. addresses) £40.00 (Overseas addresses)
Copyright
© 1991 The Royal Society and the authors of individual papers.

Except as otherwise permitted under the Copyright, Designs and Patents Act, 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of a licence issued by the Copyright Licensing Agency. In particular, the Society permits the making of a single photocopy of an article from this issue (under Sections 29 and 38 of this Act) for an individual for the purposes of research or private study.

The text paper used in this publication is alkaline sized with a coating which is predominantly calcium carbonate. The resultant surface pH is in excess of 7.5, which gives maximum practical permanence.

Printed in Great Britain by the University Press, Cambridge
Contents

Series B Volume 334

No. 1269 29 October 1991
Crustacea Phyllopoda and Malacostraca: a reappraisal of cephalic and thoracic shield and fold systems and their evolutionary significance
By ERIK DAHL 1

A complete life cycle of the calycophoran siphonophore Muggiaea kochi (Will) in the laboratory, under different temperature conditions: ecological implications
By C. CARRE and D. CARRE 27

The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of polarized light
By N. J. MARSHALL, M. F. LAND, G. A. KING and T. W. CRONIN 33

The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II. Colour pigments in the eyes of stomatopod crustaceans: polychromatic vision by serial and lateral filtering
By N. J. MARSHALL, M. F. LAND, G. A. KING and T. W. CRONIN 57

Long-range afferents in the rat spinal cord. I. Numbers, distances and conduction velocities
By P. D. WALL and P. SHORTLAND 85

The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L. (Guttiferae)
By P. W. LUCAS, M. F. CHOONG, H. T. W. TAN, I. M. TURNER and A. J. BERRICK 95

On the vortex wake of an animal flying in a confined volume
By JEREMY M. V. RAYNER and ADRIAN L. R. THOMAS 107

On the aerodynamics of animal flight in ground effect
By JEREMY M. V. RAYNER 119

Synthesis of nitric oxide by the haemocytes of the American horseshoe crab (Limulus polyphemus)
By MAEKK W. RADOMSKI, JOHN F. MARTIN and SALVADOR MONCADA 129

A mathematical model for the computation of carboxyhaemoglobin in human blood as a function of exposure time
By M. P. SINGH, MAITHILI SHARAN and S. SELVAKUMAR 135

Silica deposition and ultrastructure in the cell wall of Equisetum arvense: the importance of cell wall structures and flow control in biosilicification
By C. C. PERRY and M. A. FRASER 149

No. 1270 29 November 1991
Foraging strategies and natural diet of monkeys, apes and humans
A discussion organized and edited by E. M. WIDDOWSON and A. WHITEN 159

No. 1271 30 December 1991
Comparisons among morphological characters and between localities in the Chorthippus parallelus hybrid zone (Orthoptera: Acrididae)
By R. K. BUTLIN, M. G. RITCHIE and G. M. HEWITT 297

Nuclear DNA amounts in angiosperms
By M. D. BENNETT and J. B. SMITH 309

On the superposition of currents from ion channels
By DONALD R. FREDDIKIN and JOHN A. RICE 347

Adaptive processing techniques based on Hidden Markov Models for characterizing very small channel currents buried in noise and deterministic interferences
By S. H. CHUNG, VIKRAM KRISHNAMURTHY and J. B. MOORE 357

Anguilliform body dynamics: modelling the interaction between muscle activation and body curvature
By GRAHAM BOWTELL and THELMAS L. WILLIAMS 385

All the observed universe has contributed to life
By R. E. DAVIES and R. H. KOCH 391

Late Pleistocene stratigraphy and palaeobotany of the Isles of Scilly
By J. D. SCOURSE 405

Attachment studies of aquatic Hyphomycetes
By SUSAN J. READ, STEPHEN T. MOSS and E. B. GARETH JONES 449
Rabies in urban foxes (Vulpes vulpes) in Britain: the use of a spatial stochastic simulation model to examine the pattern of spread and evaluate the efficacy of different control régimes

By G. C. Smith and Stephen Harris

No. 1272 30 December 1991
The morphology of deep-sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean

By C. M. Payne and J. A. Allen

Instructions to authors

Indexes
MOLECULES THROUGH TIME
Fossil Molecules and Biochemical Systematics

Organized and edited by G. Eglinton and G.B. Curry

Organic molecules survive in the geological record! In fact the organic remains of life are abundant in rocks and fossils, and some biomolecules are among the strongest and most resilient structures on this planet, and as a consequence have good fossilization potential.

'Molecules through time' is a comprehensive and up-to-date survey of the survival of organic molecules in the geological record. It covers the latest technical advances and discoveries in research on ancient proteins and amino acids, DNA, lipids, chlorophyll-derived pigments and other resistant biomolecules. These organic remnants of ancient life forms represent important sources of information for many scientific disciplines, including archaeology, biochemistry, evolutionary biology, organic geochemistry, genetics, geology and palaeontology. In recent years a range of technical developments have revolutionized biomolecular research, and these new techniques are increasingly being applied both to the study of fossil molecules and to related investigations of source compounds in living organisms. In addition to presenting the latest exciting information on the survival of fossil molecules in the geological record, this volume also discusses the diverse applications of these data and the fossilization conditions that may be conducive to biomolecule preservation.

119 pages paperback ISBN 0 85403 445 5

First published in *Philosophical Transactions of the Royal Society*, Series B, Vol. 333

Price including packing and postage
£19.50 (U.K. addresses) £21.00 (Overseas addresses)

The Royal Society,
6 Carlton House Terrace,
London SW1Y 5AG
CONTENTS

PAYNE, C. M. & ALLEN, J. A.
The morphology of deep-sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean
pages 481–562

Instructions to authors 563–564
Indexes 565–566

* * *

VOLUME TITLE PAGE AND CONTENTS