INDEXES TO VOLUME 325 (B)

AIDS Group of the United Kingdom Haemophilia Centre Directors, Seropositivity for HIV in U.K. haemophiliacs, 179.

Blythe, S. P. See Anderson et al.

Chaloner, W. G. & Hallam, A. (eds). Discussion Meeting, evolution and extinction, 239.
Cooper, H. M. See Pettigrew et al.
Cowan, R. See Morris et al.
Cox, D. R. See Anderson et al.
Cox, D. R. & Davison, A. C. Prediction for small subgroups, 185.
Cox, D. R. & Medley, G. F. A process of events with notification delay and the forecasting of AIDS, 135.

Davison, A. C. See Cox & Davison.
Diamond, J. M. The present, past and future of human-caused extinctions, 469.
Dixon, K. E. See Morris et al.

Fortey, R. A. There are extinctions and extinctions: examples from the Lower Palaeozoic, 327.

Gill, O. N. See Johnson & Gill.
Gore, S. M. See Day et al.
Gupta, S. See Anderson et al.

Hall, L. S. See Pettigrew et al.
Hallam, A. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates, 437; see also Chaloner & Hallam.
Hartenberger, J.-L. See Jaeger & Hartenberger.
Hillier, H. C. See Anderson et al.
Hoffman, A. What, if anything, are mass extinctions?, 253.
Holland, C. H. Synchronology, taxonomy and reality, 263.

Isham, Valerie Estimation of the incidence of HIV infection, 113.

Jablonski, D. The biology of mass extinction: a palaeontological view, 357.
Jamieson, B. G. M. See Pettigrew et al.

Knoll, A. H. Evolution and extinction in the marine realm: some constraints imposed by phytoplankton, 279.
Konings, E. See Anderson et al.

McAnally, K. I. See Pettigrew et al.
McCormick, Anna Estimating the size of the HIV epidemic by using mortality data, 163.
McGee, M. A. See Day et al.
Mariotto, A. Rate of growth of AIDS epidemic in Europe: a comparative analysis, 175.
Maynard Smith, J. The causes of extinction, 241.
Medley, G. F. See Cox & Medley.
Morris, Valerie B., Dixon, K. E. & Cowan, R. The topology of cleavage patterns with examples from embryos of *Nereis, Styela* and *Xenopus*, 1.


Raup, D. M. The case for extraterrestrial causes of extinction, 421.
Reeves, Gillian K. The overall distribution of survival times for U.K. AIDS patients, 147.
Robson, S. K. See Pettigrew et al.

Sander, P. M. The pachypleurosaurids (Reptilia: Nothosauria) from the Middle Triassic of Monte San Giorgio (Switzerland) with the description of a new species, 561.
South, M. See Day et al.

Tudge, C. The rise and fall of *Homo sapiens sapiens*, 479.

Williamson, M. Natural extinction on islands, 457.

Young, J. Z. The angular acceleration receptor system of diverse cephalopods, 189.
acquired immune deficiency syndrome (AIDS), 113.
actuarial model, 99.
age-specific model, 99.
AIDS, 45, 99, 147, 153, 163, 185.
AIDS epidemic models, 123.
AIDS, future incidence, 39.
AIDS incubation period, 123.
AIDS, prediction, 135.
AIDS, statistical measurement, 39.
ammonites, 421.
ammonoids, 307.
anoxia, role in extinction, 327.
atom of probability, 147.
back calculation, short-term prediction, 39.
back projection method, 113.
background extinction, 357.
biased sampling, 135.
bilateral cleavage, 1.
bio-events, evolution, 253.
biostratigraphy, 263.
blastula, 1.
buoyancy and statocysts, 189.
calcareous nannoplankton, 279.
carbon, stable isotopes, 253.
causation, extinction events, 307.
cell-division patterns, 1.
chemostat models, 457.
chiropteran paraphyly, 489.
clade survival, 357.
coevolution, 241.
competition, 241.
dermopterans, 489.
dinosaur extinctions, 387.
discrete data, 147.
disease, 241.
diversity, ammonoids, 307.
empirical Bayes estimates, 175.
empirical survivor function, 147.
environmental change, 279.
Eocene–Oligocene boundary, 279.
edemic, 185.
edemics, mathematical models, 39.
edemiology, 135, 163.
edemiology of AIDS, 39.
etheelia, 1.
evolution, 239.
exponential distribution, 147.
exponential growth rate, 175.
extinction, 239, 263, 421.
extinction events, 307.
extinction, tetrapods, 369.
extinctions, 291.
extinctions, lower Palaeozoic, 327.
factor VIII, 179.
fossil record, 369.
Frasnian–Famennian boundary, 263.
geochronometry, 263.
gradiant extinction, 421.
habitat destruction, 469.
haemophilia, 179.
hepatitis B, 153.
hiv, 163, 179.
hiv epidemic predictions, 123.
hiv positive, 99.
hiv seropositivity, 179.
homosexual behaviour, 153.
human evolution, 479.
human immunodeficiency virus (AIDS), 153.
human immunodeficiency virus (HIV), 113.
incubation periods, AIDS, 113.
infection intensity, 99.
introduced species, 469.
islands, human-caused extinctions, 469.
K–T boundary, dinosaurs, 387.
K–T boundary, plants, 291.
Lotka–Volterra models, 457.
macroevolution, 253, 357.
mammalian flight, 489.
mammals, perimediterranean Neogene, 401.
marine invertebrate extinctions, 437.
mass extinction, 357, 369.
measles, 457.
mechanics of cleavage, 1.
megabats, 489.
megalfaunal extinction, 469.
meteorite impact, 421.
microbats, 489.
minimum viable population, 457.
Neogene mammals, 401.
Neusticosaurus, 561.
nonstationary point process, 135.
Octopus statocysts, 189.
Ordovician–Silurian boundary, 263, 327.
palaeobiology, 253.
palaeobotany, 291.
palaeoclimate, 291.
paraphyly, 369.
perimediterranean mammals, Neogene, 401.
Permo-Triassic extinction, 253.
Phanerozoic marine invertebrates, 437.
point process, 135, 185.
Poisson process, 135.
predation, 241.
prediction, HIV, 185.
primates, 489.
Proterozoic extinctions, 279.
rarity, 457.
Red Data Books, 469.
‘Red Queen’, 241.
regression, 437.
sea-level change, extinction, 437.
semicircular canals, 189.
sexual behaviour changes, 45.
sexual dimorphism, 561.
sexually transmitted diseases, 153.
skeletochronology, 561.
soft-part preservation, 561.
species selection, 241.
species-richness and extinction, 357.
spiral cleavage, 1.
squid statocysts, 189.
standardized mortality ratio, 163.
statocysts of cephalopods, 189.
stepwise extinction, 421.
survival analysis, 147.
taxonomy, 561.
tetrapods, extinction, 369.
transgression, 437.
transmission dynamics, HIV, 45.
trilobites, extinction, 327.
tropical rainforests, 469.
turnover, 457.
vestibular system, 189.

End of the three hundred and twenty-fifth volume (Series B)
Instructions to authors*

1. SCOPE AND AIMS

*Philosophical Transactions* series B is published monthly, in A4 double-column format, and normally issues containing the reports of discussion meetings alternate with those containing individual papers. The Society aims to make a decision on acceptance or rejection within one month of receipt, and to publish accepted papers within six months of receipt. There are no page charges.

2. GENERAL

Each paper received at the Editorial Office of the Royal Society is sent out to referees; if the reports are favourable and the paper is accepted, the authors are advised of any changes required. The Society will endeavour to encourage referees to report expeditiously, and will inform authors of the progress of the paper. However, should authors not receive a report within six weeks, they may contact the Editorial Office.

The paper is prepared for the printers once the authors have submitted a definitive version after acceptance. The paper is then sent to the printers, who prepare a proof for checking by the authors. Upon return of the authors’ proof to the Editorial Office the corrections requested are checked, and the paper then goes to press. Any delays in sending revisions of the original typescript following comments by referees, or in returning marked proofs, will result in delayed publication, and authors are asked to make every effort to respond as rapidly as possible so that the schedule for publishing their papers can be adhered to.

3. SUBMISSION

Papers may be submitted either via a Fellow or Foreign Member, or direct to the Editorial Office, The Royal Society, 6 Carlton House Terrace, London SW1Y 5AG. When sending their papers authors may, if they wish, suggest suitable referees, but such suggestions will not necessarily be adopted. Three copies of the typescript and all figures should be sent; in the case of papers where there are photographs as well as line drawings, three prints of each photograph should be sent rather than photocopies. The address of the author who will check proofs should be clearly indicated.

4. TYPESCRIPT

Papers should be clearly typewritten, double-spaced, with both margins at least 3 cm, and with each sheet clearly numbered and securely clipped together. Special attention should be given to writing as concisely as possible; papers exceeding 25000 words will only occasionally be accepted and prior consultation with the Editorial Office is recommended before submission of longer papers. The paper must have an abstract (not exceeding 800 words or 5% of the length of the paper, whichever is the less) on separate sheets, and a separate title-page giving the names of the authors and the address or addresses where the work was done. For any paper with a long title, a short title for page-headings should be given on the title page. Legends of figures numbered in sequence as they are to appear in the paper should be given, in double spacing, on separate sheets at the end of the paper.

Authors wishing to submit their papers on disc should consult the Editorial Office.

Papers involving experiments with vertebrate animals will only be accepted if the procedures used are clearly described and conform to the British Home Office regulations for avoiding unnecessary suffering to the animals.

5. ILLUSTRATIONS

Line drawings and half-tone illustrations should be prepared so that their proportions are suitable for reduction to single or double column width (80 or 167 mm respectively). The normal text area is 167 mm x 253 mm, but in exceptional cases the area available for figures can be increased to 182 mm x 257 mm. Half-tone illustrations will normally be printed with the text, and will not be grouped together on separate plates unless this is desirable. Labelling should be added to originals of line illustrations before submission if authors have the facilities to produce lettering of suitable quality and size, allowing for reduction during publication. Half-tone originals should be supplied unlettered, with the correct lettering shown on overlays. All copies of the typescript should be supplied with labelled copies of the figures.

6. STYLE

Papers must conform to the style of the *Philosophical Transactions* series B in the way in which the headings and sub-headings of separate sections are arranged and the references are cited and listed. The International System of Units (SI) should be used wherever possible. Spelling is that of the *Shorter Oxford English Dictionary*. Papers that have not been carefully checked by the authors before submission will be returned.

7. PROOFS

A single proof only will be sent to authors for checking. Excessive alterations made on the proof (other than corrections to errors made by the printer) may be charged to authors. Fifty free offprints will be sent to the senior author; additional offprints may be ordered on the offprint order form, which is sent out with the authors’ proof.

*Philosophical Transactions* series B: publication from July 1990
Developmental biology is one of the most exciting areas in contemporary science. This volume describes the results of new approaches to the embryo that have led to accurate descriptions of how, through cell lineage, the cells of the embryo produce the patterns of the adult. Results from diverse vertebrates and invertebrates are brought together for the first time.

Edited by

R.L. GARDNER, F.R.S., AND P.A. LAWRENCE, F.R.S.
THE PAST THREE MILLION YEARS

EVOLUTION OF CLIMATIC VARIABILITY IN THE NORTH ATLANTIC REGION

EDITED BY

N.J. SHACKLETON, F.R.S., R.G. WEST, F.R.S., AND D.Q. BOWEN

Any understanding of present-day life and climate of the Earth requires a foundation of knowledge of recent earth history, especially so when we realise the great climatic changes, with ice ages, which have taken place during the past three million years.

The North Atlantic region provides much evidence for climatic history, both from the ocean and from neighbouring continental areas; it is perhaps the most intensively studied area of the world in this respect.

This Royal Society Discussion Meeting, held in February 1987, was designed to bring together the many lines of evidence now attained from the variety of disciplines used to investigate palaeoclimates. The contributions first concern studies of marine geology, including isotopic variation, sedimentology and palaeontology, both in regional detail and against a broader Northern Hemisphere background. Secondly, they concern evidence for climatic history on the continents, from the Eastern U.S.A., the Canadian eastern Arctic, Iceland, and western Europe. The connection between marine and continental palaeoclimatic histories is discussed in several of the contributions, but there are still outstanding problems in such correlations, especially in the Middle and Lower Pleistocene.

The syntheses provided in this book underline the complexity of the consequences of global climatic change for the geosphere and biosphere. Progress in research in the last decade has been very successful and stimulating; it has also been timely, since the significance of this research for our present environment and its future is becoming daily more obvious.

278 pages 2 plates clothbound ISBN 0 85403 348 3


Price including packing and postage £50.00 (U.K. addresses) £53.00 (Overseas addresses)

Printed in Great Britain

for the Royal Society by the University Press, Cambridge