Analysis of Ca2+ fluxes and Ca2+ pools in pancreatic acini

BY I. SCHULZ, T. KIMURA, H. WAKASUGI, W. HAASE AND A. KRIIBEN
Max-Planck-Institut für Biophysik, Kennedyallee 70, 6000 Frankfurt/Main 70, Germany

\textit{[Plate 1]}

45Ca2+ movements have been analysed in dispersed acini prepared from rat pancreas in a quasi-steady state for 45Ca2+. Carbamyl choline (carbachol; Cch) caused a quick 45Ca2+ release that was followed by a slower 45Ca2+ 'reuptake'. Subsequent addition of atropine resulted in a further transient increase in cellular 45Ca2+. The data suggest the presence of a Cch-sensitive 'trigger' pool, which could be refilled by the antagonist, and one or more intracellular 'storage' pools. Intracellular Ca2+ sequestration was studied in isolated acini pretreated with saponin to disrupt their plasma membranes. In the presence of 45Ca2+ (1 \textmu m), addition of ATP at 5 mM caused a rapid increase in 45Ca2+ uptake exceeding the control by fivefold. Maximal ATP-promoted Ca2+ uptake was obtained at 10 \textmu M Ca2+ (half-maximal at 0.32 \textmu M Ca2+). In the presence of mitochondrial inhibitors it was 0.1 \textmu M (half-maximal at 0.014 \textmu M). 45Ca2+ release could still be induced by Cch but the subsequent reuptake was missing. The latter was restored by ATP and atropine caused further 45Ca2+ uptake. Electron microscopy showed electron-dense precipitates in the rough endoplasmic reticulum of saponin-treated cells in the presence of Ca2+, oxalate and ATP which were absent in intact cells or cells pretreated with A23187. The data suggest the presence of a plasma membrane-bound Cch-sensitive 'trigger' Ca2+ pool and ATP-dependent Ca2+ storage systems in mitochondria and rough endoplasmic reticulum of pancreatic acini. It is assumed that Ca2+ is taken up into these pools after secretagogue-induced Ca2+ release.

\textbf{Introduction}

Calcium ions can be considered as intracellular trigger for secretagogue-induced enzyme secretion from the exocrine pancreas. Indirect evidence suggests that secretagogues increase cytoplasmic free Ca2+ concentration by releasing calcium from a cellular trigger store (Gardner \textit{et al.} 1975; Renckens \textit{et al.} 1978; Stolze & Schulz 1980) and by increasing the plasma membrane permeability to Ca2+ with a consequent increased calcium influx into the cell (Kondo & Schulz 1976a, b). The pool from which trigger Ca2+ is released and the pool into which the inflowing Ca2+ is stored have not yet been identified. However, present knowledge indicates that Ca2+ pools involved in Ca2+ redistribution are plasma membrane, endoplasmic reticulum and mitochondria (Clemente & Meldolesi 1975; Dormer & Williams 1981; Petersen & Iwatsuki 1978; Petersen & Ueda 1976; Ponnappa \textit{et al.} 1981).

Previous studies suggested that the pool from which Ca2+ is released (trigger Ca2+ pool) is different from the one that it is taken up into again during stimulation (intracellular Ca2+ buffering pool) (Stolze & Schulz 1980). We now report that emptying and refilling of the Ca2+ trigger pool could also be observed in cells that had been treated with saponin. By this procedure pores of 8–10 nm in diameter are formed in plasma membranes that become permeable to ions and small molecules. The data indicate that the trigger Ca2+ pool is located in the plasma...
membrane. With the same preparation intracellular Ca2+ buffering was also studied. Ca2+ uptake could be induced in saponin-treated cells with ATP into rough endoplasmic reticulum and mitochondria as visualized by electron microscopy. Thus both organelles could be considered as intracellular Ca2+ buffering pools. Complementary studies were performed on subfractions of pancreatic tissue. ATP-promoted Ca2+ uptake could be shown into membrane vesicles enriched in the plasma membrane marker enzyme, Na+-K+ ATPase, indicating an ATP-dependent Ca2+ extrusion mechanism in the same organelles. We were not able, however, to show an ATP-dependent Ca2+ uptake into isolated rough endoplasmic reticulum. Similarly, the trigger Ca2+ pool, from which Ca2+ is released by secretagogues, has not yet been localized in subfractions of pancreatic tissue.

Secretagogue-induced Ca2+ movements in 'intact' pancreatic acinar cells

Secretagogues of enzyme secretion such as cholecystokinin–pancreozymin (CCK–Pz), its C-terminal octapeptide (CCK-8) as well as the neurotransmitter acetylcholine and its analogue carbamyl choline (Cch) increase Ca2+ efflux from acinar cells during the initial few minutes of stimulation. This phase of Ca2+ release is followed by Ca2+ reuptake due to increased Ca2+ influx during sustained stimulation. These conclusions have been derived from studies on 45Ca2+ fluxes in isolated acinar cells and acini at both ‘steady-state’ and ‘Ca2+ net flux’ conditions.

Ca2+ tracer exchange

When isolated acinar cells were preincubated in the presence of secretagogues and calcium for 1 h until a quasi-stationary state was reached, addition of trace amounts of 45Ca2+ at time 0 caused increased 45Ca2+ uptake in the presence of secretagogues (figure 1). Since the initial rate of 45Ca2+ influx was increased, it was concluded that secretagogues increase unidirectional Ca2+ influx into the cells (Kondo & Schulz 1976a). Similar data were obtained for unidirectional 45Ca2+ efflux (Kondo & Schulz 1976b). Assuming increased cytoplasmic free Ca2+ concentrations in the presence of secretagogues, the finding of increased Ca2+ exchange at steady state indicates that the Ca2+ permeability of the plasma membrane, the activity of plasma membrane-bound extrusion mechanisms, or both, are augmented. Since a primary increase in Ca2+ extrusion would lead to a decrease rather than to an increase in cytoplasmic Ca2+ concentration, it is more probable that secretagogues increase the Ca2+ permeability of the plasma membrane, which secondarily leads to increased Ca2+-pump activity.

Ca2+ net flux

Measurements of calcium net fluxes are best performed by monitoring changes of total concentration of cellular calcium. However, since these changes are sometimes very small and hard to detect, 45Ca has been used to monitor cellular calcium (Gardner et al. 1975; Stolze & Schulz 1980).

Figure 2 shows an experiment in which isolated acini had been preloaded with 45Ca2+ for 45 min until a stationary state for the tracer was reached. Assuming that under these conditions the specific activity of 45Ca is the same in all readily exchangeable cell compartments, the rate of 45Ca flow can be taken to indicate calcium net flow. Addition of the secretagogue caused a quick 45Ca2+ release followed by reuptake. As shown in curve a, prestimulated cells could
not be restimulated to release $^{45}\text{Ca}^{2+}$ a second time (Gardner et al. 1975; Stolze & Schulz 1980). However, when the antagonist was added subsequently, $^{45}\text{Ca}^{2+}$ uptake rapidly increased above the control and a second release was then possible (curve b) (Stolze & Schulz 1980, Wakasugi et al. 1981). These data were interpreted to mean that in the first phase of stimulation Ca^{2+} is released from a ‘trigger pool’ into the cytosol, increasing its free Ca^{2+} concentration, and subsequently extruded from the cell. In the second phase Ca^{2+} influx into the cell is augmented owing to the increased Ca^{2+} permeability of the plasma membrane, and calcium is taken up into an intracellular located ‘storage pool’.

Figure 1. $^{45}\text{Ca}^{2+}$ uptake into isolated pancreas cells at steady-state and zero net flux conditions. Cells were preincubated for 60 min with Ca^{2+} (1.25 mM) in the presence or absence of secretagogues. At time 0, $^{45}\text{Ca}^{2+}$ in trace amounts was added. △, In the presence of CCK-Pz (86 nM); ■, in the presence of carbamyl choline (10 μM); ○, control. (From Kondo & Schulz (1976a).)

Figure 2. Effect of acute stimulation on cellular $^{45}\text{Ca}^{2+}$ content in Ca^{2+} net flux conditions. Cells were preloaded with $^{45}\text{Ca}^{2+}$ (1.25 mM) for 45 min until a steady state was reached. At indicated times, test substances were added. Curve a, successive additions of 0.1 mM carbamylcholine (Cch) and 0.1 μM cholecystokinin–pancreozymin (CCK–Pz). Curve b, successive addition of Cch and CCK–Pz with an interposed step of 10 μM atropine administration. ○, Control. (From Stolze & Schulz (1980).)
ATP-promoted 45Ca$^{2+}$ uptake into 'leaky' acini

To investigate intracellular Ca$^{2+}$ uptake and to localize Ca$^{2+}$ sequestration, we treated isolated acini with saponin to disrupt their plasma membranes. As shown in other tissues this treatment makes the plasma membrane permeable to small ions and molecules by the interaction of saponin with cholesterol and formation of holes of 8–10 nm in a micellar-type arrangement (Bangham & Horne 1962; Blaustein et al. 1978a, b; Dourmashkin 1962; Endo et al. 1977; Glauert et al. 1962). Cholesterol-poor membranes such as those of the endoplasmic reticulum and mitochondria (Korn 1966) should be less affected. The increase in plasma membrane permeability was estimated by measuring the uptake of trypan blue and the release of the cytosolic enzyme lactate dehydrogenase that were increased by 95–100% and 80%, respectively, after treatment with saponin for 10 min.

As shown in figure 3, the addition of ATP (5 mM) increased 45Ca$^{2+}$ uptake by four to fivefold over the control, whereas addition of ATP to 'intact' cells had only a very small effect (Wakasugi et al. 1981a). ADP also increased uptake by about 60% of the value obtained with ATP. Studies with the adenylate kinase inhibitor diadenosyl pentaphosphate suggest, however, that the effect of ADP might be due to the conversion of ADP into ATP. Other nucleotides such as ITP, UTP, CTP, GTP as well as the ATP analogues AMP-PNP and AMP-PCP (figure 4) (Wakasugi et al. 1981a) had no effect on 45Ca$^{2+}$ uptake. Also shown in figure 4 is the effect of the Ca$^{2+}$ ionophore A23187. Since the effect of ATP was completely abolished in the presence of the ionophore it can be assumed that ATP-promoted uptake occurs into a vesicular space. Further support for an ATPase involved in ATP-promoted 45Ca$^{2+}$ uptake was obtained from the observation that uptake was abolished in the absence of Mg$^{2+}$ (Wakasugi et al. 1981a).

Evidence for mitochondrial and non-mitochondrial Ca$^{2+}$ sequestration

With increasing 45Ca$^{2+}$ concentrations of the incubation medium, free [Ca$^{2+}$] being adjusted with EGTA, ATP-promoted Ca$^{2+}$ uptake increased and reached a maximal value at 10 μM (figure 5). In the presence of the mitochondrial inhibitors oligomycin and antimycin A, 45Ca$^{2+}$
Figure 4. Effect of A23187 on ATP-promoted 45Ca2+ uptake and of non-hydrolysable ATP analogues on 45Ca2+ uptake. Cells were pretreated for 10 min with saponin (45 μg/ml) and at time 0, 45Ca2+ (1 μM) was added. •, Addition of Na\textsubscript{2}ATP (5 mM) at 60 min; △, addition of A23187 (1 μM) at 40 min and subsequent addition of Na\textsubscript{4}ATP (\textbullet, 5 mM) at 60 min; ●, addition of adenylyl imidodiphosphate (tetralithium salt) (AMP-PNP); ■, of adenylyl (β, γ-methylene)-diphosphonate (tetralithium salt) (AMP-PCP) at 60 min. One experiment.

Figure 5. (a) Effect of different Ca2+ concentrations on ATP-promoted 45Ca2+ uptake. Free Ca2+ concentration was adjusted with EGTA. •, Without mitochondrial inhibitors; ○, in the presence of oligomycin and antimycin A (10 μM each). Values are the means ± s.e. of three to six experiments. (b) Replot of curves from (a). Curve for ‘mitochondrial Ca2+ uptake’ was obtained by subtracting the Ca2+ uptake in the presence of inhibitors (○ in (a)) from that in the absence of inhibitors (● in (a)).
uptake was inhibited at higher Ca2+ concentrations, resulting in a concentration–response curve with maximal ATP-promoted 45Ca2+ uptake at 100 nM and an apparent K_m value between 10 and 100 nM. These data suggest that at least two Ca2+-sequestration sites are involved: mitochondria that take up Ca2+ if the free Ca2+ concentration is higher than 100 nM, and a non-mitochondrial one that regulates free Ca2+ concentration at lower levels, starting to take up between 1 and 10 nM and being saturated at 100 nM.

Localization of Ca2+ uptake by electron microscopy

To locate the site of Ca2+ uptake we have incubated saponin-treated acini in the presence of calcium, ATP and oxalate to obtain Ca oxalate precipitates at the site of ATP-dependent Ca2+ transport. As shown in figure 6, plate 1, electron-dense precipitates can be seen in the rough endoplasmic reticulum as well as in mitochondria. These precipitates have been confirmed by laser microprobe mass analysis to be areas of higher calcium content than in areas without precipitates (Wakasugi et al. 1981). It therefore appears from these experiments that the non-mitochondrial site of Ca2+ uptake is the rough endoplasmic reticulum.

![Figure 7](http://rstb.royalsocietypublishing.org/)

Effect of carbachol

It is of interest whether these Ca2+-uptake sites visualized in the presence of ATP are identical to those into which Ca2+ is taken up in the second phase of stimulation with secretagogues of enzyme secretion. We have therefore studied secretagogue-induced 45Ca2+ movements in acini treated with saponin. Since these cells are open for substances of high molecular mass such as lactate dehydrogenase, it can be assumed that effects of secretagogues seen in these cells are restricted to the secretagogue–receptor interaction located on the plasma membrane and not to intracellular messengers.

Figure 7 shows carbachol-induced 45Ca2+ movements in ‘intact’ acini and ‘resealed’ acini compared with saponin-treated acini. This experiment demonstrates that saponin-treated acini react like untreated acini when saponin has been washed away. It can therefore be assumed...
Figure 6. Section through a rat pancreatic acinar cell pretreated with saponin. The incubation medium contained potassium oxalate, ATP (5 mM), and calcium (0.1 mM). Electron-dense precipitates are formed in the cisternae of the rough endoplasmic reticulum (arrows) and in the envelope and cristae of mitochondria (arrowheads).

(Facing p. 110)
Ca2+ POOLS IN PANCREATIC ACINI

that the formation of holes due to the binding of saponin to cholesterol of the plasma membrane is a reversible process. In the presence of 100 \textmu M 45Ca in the incubation medium (figure 7), 45Ca2+ uptake is higher than at 1 \textmu M (figure 1). This might be due to the inability of the cells to keep a low intracellular free Ca2+ concentration when the extrusion mechanism became ineffective. The addition of carbachol resulted in a quick 45Ca2+ release that was not followed by 45Ca2+ reuptake in saponin-treated acini. We interpret these data to mean that 45Ca2+ release occurred from the plasma membrane as a consequence of direct secretagogue-receptor interaction and not of intracellular mediation of a second messenger. Missing 45Ca2+ reuptake could be due to a lack of intracellular ATP in these open cells. The higher 45Ca2+ release seen in saponin-treated acini than in ‘intact’ acini might be a consequence of missing 45Ca2+ reuptake, since both 45Ca2+ release and 45Ca2+ reuptake at net flux conditions can be explained with two simultaneously occurring opposing 45Ca2+ movements of the extent shown in figure 7 for ‘release’ and in figure 1 for ‘uptake’. The overlap of both unidirectional Ca2+ efflux and influx curves should result in a net flow curve similar to that observed in intact acini.

When ATP was added to saponin-treated acini after the addition of carbachol, rapid 45Ca2+ uptake could be observed. Subsequent addition of atropine, the antagonist of carbachol, resulted in further 45Ca2+ uptake (figure 8). This experiment further supports our conclusion drawn from the experiment shown in figure 2 that a pool from which Ca2+ had been released by secretagogue (‘trigger Ca2+ pool’) could be refilled by action of the antagonist, whereas in the second phase of stimulation Ca2+ is taken up into an intracellular pool other than the

Figure 8. Effect of successive additions of carbachol (10 \textmu M), atropine (10 \textmu M; ○, ■) and ATP (5 mM; □, ●, ▲) on 45Ca2+ uptake in saponin-treated acini (upper two curves) and untreated acini (lower curve). Acini had been preincubated with saponin (45 \textmu g/ml) for 10 min. At time 0, 45Ca2+ (100 \textmu M) was added.
trigger pool’. This second pool appears to be ATP dependent and might be mitochondria and rough endoplasmic reticulum, as concluded from experiments with inhibitors and electron microscopy as described before.

\[{^{45}}\text{Ca}^{2+} \text{ uptake experiments on cellular subfractions} \]

We have tried to confirm the sites of ATP-induced Ca\(^{2+} \) uptake as visualized in saponin-treated cells by studies on subfractions obtained by zonal centrifugation after homogenization of pancreatic tissue (Milutinović et al. 1977). As shown in figure 9, in the presence of mitochondrial inhibitors, ATP-induced \({^{45}}\text{Ca}^{2+} \) uptake was found only in a fraction enriched in plasma-membrane marker enzymes (F\(_I\)) and to a small extent in the rough endoplasmic reticulum (F\(_H\)). Correlation of Ca\(^{2+} \) uptake with marker enzymes of plasma membranes and endoplasmic reticulum made it likely that Ca\(^{2+} \) uptake occurred into plasma membrane vesicles (F\(_I\)) and that Ca\(^{2+} \) uptake into F\(_H\) was due to contamination of this fraction with plasma membranes (data not shown).

\[\text{Figure 9. } {^{45}}\text{Ca}^{2+} \text{ uptake into isolated subfractions of pancreatic tissue (for method see Milutinović et al. (1977)) in the presence (•) or absence (○) of ATP (5 mm).} \]

These data are in contrast to those obtained from experiments in saponin-treated cells that showed Ca oxalate precipitates in the rough endoplasmic reticulum in the presence of ATP. We do not yet know why we were not able to demonstrate ATP-promoted Ca\(^{2+} \) uptake into isolated rough endoplasmic reticulum. The reason could be a lack of closed vesicles after preparation. However, a Mg\(^{2+} \)-dependent Ca\(^{2+} \) ATPase has also not been found in the rough endoplasmic reticulum, whereas it was present in ‘plasma membranes’ (data not shown). We therefore assume that a cofactor, necessary for ATP-dependent Ca\(^{2+} \) transport was lost during preparation. This, however, is not likely to be calmodulin, since this did not induce Ca\(^{2+} \) uptake in the rough endoplasmic reticulum fraction in the presence or absence of ATP (data not shown). On the other hand, we have found ATP-promoted Ca\(^{2+} \) uptake located in plasma membranes. This observation could mean that in addition to the ‘trigger Ca\(^{2+} \) pool’ from which Ca\(^{2+} \) is released our ATP-dependent Ca\(^{2+} \) pool is also located in plasma membranes. It seems
to be more likely, however, that we have demonstrated the Ca\(^{2+}\)–Mg\(^{2+}\) ATPase responsible for ATP-dependent Ca\(^{2+}\) extrusion located in inside-out vesicles from the plasma membrane.

Although we have not yet been able to localize either the trigger Ca\(^{2+}\) pool or the Ca\(^{2+}\) storage pool in pancreatic subfractions, experiments on saponin-treated cells indicate that the former is the plasma membrane, whereas the latter are rough endoplasmic reticulum and mitochondria. More refined techniques than those applied by us should probably be able to decide their exact location.

References (Schulz et al.)

