Prostacyclin and vascular disease

By R. J. Gryglewski, A. Szczeklik, H. Żygulśka-Mach and E. Kostka-Trąbka

Ophthalmological Clinic, Institute of Internal Medicine, Department of Pharmacology, N. Copernicus Academy of Medicine in Kraków, 31-531 Kraków, Grzegórzecka 16, Poland

We hypothesize that prostacyclin (PGI₂) is an anti-atherosclerotic hormone and that atherosclerosis develops when endothelial PGI₂ synthetase is inhibited by lipid peroxides. Serum lipid peroxides occur in low-density lipoproteins (LDL). LDL lipid peroxides are elevated in common types of hyperlipoproteinaemias, PGI₂ generation is impaired in atherosclerosis, and infusion of synthetic PGI₂ into patients alleviates symptoms resulting from arteriosclerosis obliterans, central retinal vein occlusion or spontaneous angina.

Introduction

Prostacyclin (PGI₂) is a potent stimulator of platelet adenylate cyclase (Gorman et al. 1977; Tateson et al. 1977). Therefore, it inhibits platelet aggregation (Gryglewski et al. 1976, Moncada et al. 1976a) and disaggregates platelet clumps (Gryglewski et al. 1978a). PGI₂ is also a vasodilator, especially in the pulmonary circulation (Kadowitz et al. 1980) and stimulates the release of a plasminogen activator from the lungs (Hechtman et al. 1980). PGI₂ is generated by arterial walls (Bunting et al. 1976; Gryglewski et al. 1976; Moncada et al. 1976a, b), lungs (Gryglewski 1978b, c, 1979a, b; Moncada et al. 1978), kidneys (Whorton et al. 1977; Remuzzi et al. 1978; Silberbauer et al. 1979), uterus (Vesin et al. 1979; Williams et al. 1978) and the other organs (Pace-Asciak & Rangaraj 1977). The lungs continuously secrete PGI₂ into arterial circulation (Gryglewski et al. 1978b, c; Moncada et al. 1978) and this secretion is stimulated by hyperventilation (Gryglewski et al. 1978b) or activation of chemoreceptors (Gryglewski et al. 1978b), or activation of chemoreceptors (Gryglewski et al. 1980a) as well as by angiotensin II (Gryglewski 1979a; Gryglewski et al. 1979, 1980b), bradykinin (Mullane & Moncada 1980) and acetylcholine (Gryglewski et al. 1980a).

Lipid peroxides, including 15-hydroperoxyeicosatetraenoic acid (15-HPETE, 15-HPAA), inhibit PGI₂ synthetase in porcine aortic microsomes (Gryglewski et al. 1976; Moncada et al. 1976b; Salmon et al. 1978). 15-HPETE inactivates the enzyme also in rabbit arterial slices (Bunting et al. 1976) and in cultured human endothelial cells (Marcus et al. 1978), possibly as the result of peroxidative reduction of lipid hydroperoxides and the release of [O₂⁻] (Kuehl et al. 1980). We believe that PGI₂ is a natural anti-atherosclerotic hormone (Gryglewski 1979a), and its removal from the body may initiate atherosclerotic process (Gryglewski 1980).

Indeed, the generation of PGI₂ by aorta, mesenteric arteries, heart (Dembieńska-Kiec et al. 1977; Gryglewski et al. 1978d), lungs and kidneys (Dembieńska-Kiec et al. 1979) in experimental atherosclerosis in rabbits, and this can be detected within a week of feeding the rabbits an atherogenic diet (Masotti et al. 1979). In atherosclerosis, arachidonic acid metabolism may be diverted from PGI₂ to other prostaglandins (Dembieńska-Kiec et al. 1979) or to thromboxane A₂ (Szczeklik & Gryglewski 1978; Szczeklik et al. 1978a; Żmuda et al. 1977).

Although there exists no direct evidence that human atherosclerosis is causally associated
with an increased lipid peroxidation, lipid peroxides have been found in human atherosclerotic arteries (Glavind et al. 1952; Hartroft & Prta 1965). Human atheromatic plaques generate very little PG \(\text{I}_2 \) (Angelo et al. 1978). Atherogenic low-density lipoproteins (LDL) were reported to inhibit the generation of an anti-aggregatory principle by cultured human endothelial cells (Nordøy et al. 1978) and to damage them (Henriksen et al. 1979), while anti-atherogenic high-density lipoproteins (HDL) prevented the deleterious action of LDL (Henriksen et al. 1979; Nordøy et al. 1978). We have recently found (Szczeklik & Gryglewski 1980) that lipid peroxides occur mainly in LDL while HDL are free from them.

The above indirect evidence for involvement of lipid peroxidation and PG \(\text{I}_2 \) deficiency in pathogenesis of atherosclerosis stimulated clinical trials with PG \(\text{I}_2 \) in arteriosclerosis obliterans. In 1978 we infused PG \(\text{I}_2 \) into healthy volunteers (Gryglewski et al. 1978a, Szczeklik et al. 1978) and found that pharmacologically active doses of PG \(\text{I}_2 \) are within the range 1–20 ng kg\(^{-1}\) min\(^{-1}\), intravenously. Moderate lowering of diastolic blood pressure, prolongation of bleeding time, reddening of the face and palms as well as inhibition of platelet aggregation and dissipation of circulating platelet aggregates were the most prominent pharmacological actions of PG \(\text{I}_2 \). A year later PG \(\text{I}_2 \) was administered to the first five patients suffering from arteriosclerosis obliterans (Szczeklik et al. 1979), and the number of the treated patients has now considerably increased (Szczeklik et al. 1980a). Patients with central retinal vein occlusion were also treated with PG \(\text{I}_2 \) (Żygulska-Mach et al. 1981).

Patients and methods

Fifty patients (44 men and 6 women) were treated with PG \(\text{I}_2 \). Arteriosclerosis obliterans was diagnosed in 36 patients (46–76 years old) and thrombangiitis obliterans in 12 (33–44 years old). Two women (24 and 26 years old) suffered from Takayasu disease of the lower extremities. In all but 3 patients the diagnosis was confirmed by angiographic examination.

Ischaemia at rest was recorded in 44 patients as evidenced by rest pain, ischaemic ulceration or necrosis. Only in 6 patients was physical exercise (walking) necessary to induce pain. Of the 50 patients, 7 had undergone vascular reconstructive surgery, 8 perivascular sympathectomy, 5 amputation of toe or foot and 5 amputation of leg beneath knee. In the past, therapy with vasodilators (Complamin, Tolazoline, Bamethan) was tried without success.

Sodium salt of PG \(\text{I}_2 \) (Upjohn Co., Kalamazoo, U.S.A. and Wellcome Research Laboratories, Beckenham, U.K.) was dissolved in 0.1 m glycine buffer at pH 10.5 and infused into the femoral artery (33 patients) or subclavian vein (17 patients) at a dose of 2–10 ng kg\(^{-1}\) min\(^{-1}\) for 72 h. The infusion rates of PG \(\text{I}_2 \) were maintained at as high a level as the patients could tolerate. In 20 patients the PG \(\text{I}_2 \) therapy was repeated 2–4 times every 1–20 weeks. The total observation period for 50 patients studied was 3–17 months. No pharmacological treatment other than PG \(\text{I}_2 \) was prescribed.

Three patients (1 man and 2 women, 63–72 years old) with a sudden unilateral loss of vision resulting from the occlusion of the central retinal vein were infused with PG \(\text{I}_2 \) into a subclavian vein, at the doses indicated above. PG \(\text{I}_2 \) was administered 24 h, 48 h or 7 days after the first symptom of the disease had been reported by the patient.
Results

Infusions of PGI₂ made the affected leg become dry and hot. Erythema usually appeared. Platelet aggregability was suppressed for up to 3 h after the termination of the infusion of PGI₂. Side effects of the PGI₂ therapy were, in diminishing order of frequency: pain in the infused leg, headache, jaw articular pain, nausea, lowering of diastolic arterial pressure, cardiac ventricular arrhythmias. Moderate hyperglycemia was recorded in several patients, especially in those with otherwise balanced diabetes. Because of rest pain, 23 patients had to rely on narcotic or non-narcotic pain-killers administered several times daily. In 15 of those 23 patients, the pain was abolished for a period of 4 weeks to 16 months, the day after termination of the infusion of PGI₂. In half of the 32 patients with ischaemic ulcers, partial or complete healing was observed, while in 7 patients with deep penetrating necrosis, no improvement occurred. In 5 out of 6 patients with intermittent claudication, PGI₂ caused a sustained increase in walking distance (4 km/h) by at least 50%.

Patients with central retinal vein occlusion suffered from generalized atherosclerosis or hypertension. Their visual acuity in the affected eye was 1/50–2/50, while ophthalmoscopic examination revealed venous dilation and tortuosity, oedema of various regions of the retina, and punctate and small round haemorrhages scattered in the fundus. A dramatic improvement was observed in two patients to whom PGI₂ had been administered 24 and 48 h after the sudden diminution of vision. Two months later their visual acuity was 0.2 and 0.5 and the regression of retinal oedema, haemorrhages and other lesions was nearly complete.

No improvement was observed in the patient who had received the treatment on the seventh day of the disease. Five months later his visual acuity was still 1/50, with oedema of the optic disc and retina, and haemorrhages and dilatation of the retinal vein.

Discussion

The effectiveness of the PGI₂ therapy in arteriosclerosis obliterans seemed to depend on the localization of the obliterating lesions in arteries, the existence of collateral circulation and the advancement of the disease (Szczeklik et al. 1980a). Our group of patients was not homogeneous; nevertheless, 88% of them suffered from the symptoms of ischaemia at rest, including focal necrosis, ischaemic ulcers and pain. In those patients, anticoagulant or vasodilator drugs are of little value (Coffman 1979), as we have confirmed in our patients. In 40% of this group of patients, single or repeated courses of the PGI₂ therapy resulted in a long-term clinical improvement. We therefore assume, from the benefit derived, that in those patients PGI₂ substituted the lacking anti-atherosclerotic endogenous hormone. The results of our clinical trials fully support the initiation of controlled clinical studies on the effectiveness of PGI₂ in arteriosclerosis obliterans.

A therapeutic improvement was achieved in two patients that had been treated with PGI₂ 24 and 48 h after a sudden occlusion of central retinal vein but not in the patient that received the treatment on the seventh day of the disease. In 28 patients to whom PGI₂ (5–10 ng kg⁻¹ min⁻¹, intravenously) was administered because of arteriosclerosis obliterans of the lower extremities, we did not observe any vasodilatation of retinal blood vessels (our unpublished data). Therefore, it might be that a disaggregatory action of PGI₂ was responsible for the
reopening of retinal blood vessels that were occluded with fresh platelet clumps. It is tempting to speculate that the PG I\textsubscript{2}-induced release of a plasminogen activator from lungs may also contribute to the effectiveness of PG I\textsubscript{2} in occlusive vascular disease (Hechtman et al. 1980).

Central retinal vein occlusion is usually treated with heparin, streptokinase, urokinase, steroidal and non-steroidal anti-inflammatory drugs, dextran, vasodilators, vitamin C or P (Anon 1979; Coscas & Dhermy 1978). According to Rubinstein & Jones (1976) of 143 patients treated pharmacologically, the regression of retinal lesions was complete only in 11. In our ophthalmological clinic, 48 patients with acute occlusion of central retinal vein were treated with heparin, vitamin C and nicotinic acid derivatives. In 32 patients visual acuity showed no change.

Patients with occlusion of the central retinal vein suffer from late complications of the disease such as secondary glaucoma, maculopathy and proliferation of new vessels. These are usually treated with xenon-arc or laser photocoagulation (May et al. 1979). The above complications have not so far developed in the patients treated with PG I\textsubscript{2}. A rapid improvement and lack of late complications in two patients treated with PG I\textsubscript{2} at the early stage of the disease encourages further studies on the therapeutic use of PG I\textsubscript{2} in acute occlusion of the central retinal vein and, possibly, of other cerebral blood vessels.

PG I\textsubscript{2} has also been successfully used in the treatment of spontaneous angina (Szczeklik et al. 1980b). There exists an experimental basis for clinical trials with PG I\textsubscript{2} in preventing of rejection of renal transplants (Leithner et al. 1980), in treatment of pulmonary embolism (Utsunomiya et al. 1980) and in supplementation of heparin during haemodialysis and haemoperfusion (Bunting et al. 1979; Weston et al. 1979). The effectiveness of PG I\textsubscript{2} in vascular occlusive disease seems to be associated with its anti-aggregatory, disaggregatory and anti-releasing actions on blood platelets. The prevention of activation of the coagulation system derives from the effects of PG I\textsubscript{2} on platelets. The activation of fibrinolytic systems by PG I\textsubscript{2} in the lungs constitutes a new concept of its action (Hechtman et al. 1980).

References (Gryglewski et al.)

[170]

Szczeklik, A. & Gryglewski, R. J. 1980 Low-density lipoproteins (LDL) are carriers for lipid peroxides and invalidate prostacyclin (PGI$_2$) biosynthesis in arteries. \textit{Artery}. (Submitted.)

Szczeklik, A., Szczeklik, J., Niżankowski, R. & Głuszko, P. 1980b Prostacyclin for acute coronary insufficiency. \textit{Artery}. (In the press.)

