Skip to main content
  • Other Publications
    • Philosophical Transactions B
    • Proceedings B
    • Biology Letters
    • Open Biology
    • Philosophical Transactions A
    • Proceedings A
    • Royal Society Open Science
    • Interface
    • Interface Focus
    • Notes and Records
    • Biographical Memoirs

Advanced

  • Home
  • Content
    • Latest issue
    • Forthcoming
    • All content
    • Subject collections
    • Videos
  • Information for
    • Authors
    • Guest editors
    • Reviewers
    • Readers
    • Institutions
  • About us
    • About the journal
    • Editorial board
    • Policies
    • Citation metrics
    • Open access
  • Sign up
    • Subscribe
    • eTOC alerts
    • Keyword alerts
    • RSS feeds
    • Newsletters
    • Request a free trial
  • Propose an issue
You have accessRestricted access

A network model of behavioural performance in a rule learning task

Michael E. Hasselmo, Chantal E. Stern
Published 26 February 2018.DOI: 10.1098/rstb.2017.0275
Michael E. Hasselmo
Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael E. Hasselmo
  • For correspondence: hasselmo@bu.edu
Chantal E. Stern
Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Humans demonstrate differences in performance on cognitive rule learning tasks which could involve differences in properties of neural circuits. An example model is presented to show how gating of the spread of neural activity could underlie rule learning and the generalization of rules to previously unseen stimuli. This model uses the activity of gating units to regulate the pattern of connectivity between neurons responding to sensory input and subsequent gating units or output units. This model allows analysis of network parameters that could contribute to differences in cognitive rule learning. These network parameters include differences in the parameters of synaptic modification and presynaptic inhibition of synaptic transmission that could be regulated by neuromodulatory influences on neural circuits. Neuromodulatory receptors play an important role in cognitive function, as demonstrated by the fact that drugs that block cholinergic muscarinic receptors can cause cognitive impairments. In discussions of the links between neuromodulatory systems and biologically based traits, the issue of mechanisms through which these linkages are realized is often missing. This model demonstrates potential roles of neural circuit parameters regulated by acetylcholine in learning context-dependent rules, and demonstrates the potential contribution of variation in neural circuit properties and neuromodulatory function to individual differences in cognitive function.

This article is part of the theme issue ‘Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences’.

Footnotes

  • One contribution of 20 to a theme issue ‘Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences’.

  • Accepted November 30, 2017.
  • © 2018 The Author(s)
http://royalsocietypublishing.org/licence

Published by the Royal Society. All rights reserved.

View Full Text

Sign in for Fellows of the Royal Society

Fellows: please access the online journals via the Fellows’ Room

Not a subscriber? Request a free trial

Log in using your username and password

Enter your Philosophical Transactions of the Royal Society B: Biological Sciences username.
Enter the password that accompanies your username.
Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.

Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.

Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.

PreviousNext
Back to top
PreviousNext
19 April 2018
Volume 373, issue 1744
Philosophical Transactions of the Royal Society B: Biological Sciences: 373 (1744)
  • Table of Contents
Theme issue ‘Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences’ compiled and edited by Irina Trofimova, Trevor W. Robbins, William H. Sulis and Jana Uher

Keywords

neocortex
rule learning
muscarinic receptors
acetylcholine
Share
A network model of behavioural performance in a rule learning task
Michael E. Hasselmo, Chantal E. Stern
Phil. Trans. R. Soc. B 2018 373 20170275; DOI: 10.1098/rstb.2017.0275. Published 26 February 2018
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Email

Thank you for your interest in spreading the word on Philosophical Transactions of the Royal Society B: Biological Sciences.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A network model of behavioural performance in a rule learning task
(Your Name) has sent you a message from Philosophical Transactions of the Royal Society B: Biological Sciences
(Your Name) thought you would like to see the Philosophical Transactions of the Royal Society B: Biological Sciences web site.
Print
Manage alerts

Please log in to add an alert for this article.

Sign In to Email Alerts with your Email Address
Citation tools
Research article:

A network model of behavioural performance in a rule learning task

Michael E. Hasselmo, Chantal E. Stern
Phil. Trans. R. Soc. B 2018 373 20170275; DOI: 10.1098/rstb.2017.0275. Published 26 February 2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Article reuse

  • Article
    • Abstract
    • 1. Introduction
    • 2. Methods
    • 3. Results
    • 4. Discussion
    • Data accessibility
    • Competing interests
    • Funding
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

See related subject areas:

  • neuroscience

Related articles

Cited by

Print issues available for purchase

Open biology

  • PHILOSOPHICAL TRANSACTIONS B
    • About this journal
    • Contact information
    • Purchasing information
    • Propose an issue
    • Open access membership
    • Recommend to your library
    • FAQ
    • Help

Royal society publishing

  • ROYAL SOCIETY PUBLISHING
    • Our journals
    • Open access
    • Publishing policies
    • Conferences
    • Podcasts
    • News
    • Blog
    • Manage your account
    • Terms & conditions
    • Cookies

The royal society

  • THE ROYAL SOCIETY
    • About us
    • Contact us
    • Fellows
    • Events
    • Grants, schemes & awards
    • Topics & policy
    • Collections
    • Venue hire
1471-2970

Copyright © 2018 The Royal Society