Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks?

Natalia Prevarskaya, Halima Ouadid-Ahidouch, Roman Skryma, Yaroslav Shuba


Cancer involves defects in the mechanisms underlying cell proliferation, death and migration. Calcium ions are central to these phenomena, serving as major signalling agents with spatial localization, magnitude and temporal characteristics of calcium signals ultimately determining cell's fate. Cellular Ca2+ signalling is determined by the concerted action of a molecular Ca2+-handling toolkit which includes: active energy-dependent Ca2+ transporters, Ca2+-permeable ion channels, Ca2+-binding and storage proteins, Ca2+-dependent effectors. In cancer, because of mutations, aberrant expression, regulation and/or subcellular targeting of Ca2+-handling/transport protein(s) normal relationships among extracellular, cytosolic, endoplasmic reticulum and mitochondrial Ca2+ concentrations or spatio-temporal patterns of Ca2+ signalling become distorted. This causes deregulation of Ca2+-dependent effectors that control signalling pathways determining cell's behaviour in a way to promote pathophysiological cancer hallmarks such as enhanced proliferation, survival and invasion. Despite the progress in our understanding of Ca2+ homeostasis remodelling in cancer cells as well as in identification of the key Ca2+-transport molecules promoting certain malignant phenotypes, there is still a lot of work to be done to transform fundamental findings and concepts into new Ca2+ transport-targeting tools for cancer diagnosis and treatment.


View Full Text

Log in through your institution