The endocrine control of reproduction in Nereidae: a new multi-hormonal model with implications for their functional role in a changing environment

A. J. Lawrence, J. M. Soame

Abstract

Nereidae are vital to the functioning of estuarine ecosystems and are major components in the diets of over-wintering birds and commercial fish. They use environmental cues to synchronize reproduction. Photoperiod is the proximate cue, initiating vitellogenesis in a temperature-compensated process. The prevailing paradigm in Nereidae is of a single ‘juvenile’ hormone controlling growth and reproduction. However, a new multi-hormone model is presented here that integrates the environmental and endocrine control of reproduction. This is supported by evidence from in vitro bioassays. The juvenile hormone is shown to be heat stable and cross reactive between species. In addition, a second neuro-hormone, identified here as a gonadotrophic hormone, is shown to be present in mature females and is found to promote oocyte growth. Furthermore, dopamine and melatonin appear to switch off the juvenile hormone while serotonin and oxytocin promote oocyte growth. Global warming is likely to uncouple the phase relationship between temperature and photoperiod, with significant consequences for Nereidae that use photoperiod to cue reproduction during the winter in northern latitudes. Genotypic adaptation of the photoperiodic response may be possible, but significant impacts on fecundity, spawning success and recruitment are likely in response to short-term extreme events. Endocrine-disrupting chemicals may also impact on putative steroid hormone pathways in Nereidae with similar consequences. These impacts may have significant implications for the functional role of Nereidae and highlight the importance of comparative endocrinology studies in these and other invertebrates.

View Full Text