Estimation of effective population sizes from data on genetic markers

Jinliang Wang


The effective population size (Ne) is an important parameter in ecology, evolutionary biology and conservation biology. It is, however, notoriously difficult to estimate, mainly because of the highly stochastic nature of the processes of inbreeding and genetic drift for which Ne is usually defined and measured, and because of the many factors (such as time and spatial scales, systematic forces) confounding such processes. Many methods have been developed in the past three decades to estimate the current, past and ancient effective population sizes using different information extracted from some genetic markers in a sample of individuals. This paper reviews the methodologies proposed for estimating Ne from genetic data using information on heterozygosity excess, linkage disequilibrium, temporal changes in allele frequency, and pattern and amount of genetic variation within and between populations. For each methodology, I describe mainly the logic and genetic model on which it is based, the data required and information used, the interpretation of the estimate obtained, some results from applications to simulated or empirical datasets and future developments that are needed.


  • One contribution of 16 to a Theme Issue ‘Population genetics, quantitative genetics and animal improvement: papers in honour of William (Bill) Hill’.

    View Full Text

    Log in through your institution