Investigations into resting-state connectivity using independent component analysis

Christian F Beckmann, Marilena DeLuca, Joseph T Devlin, Stephen M Smith

Abstract

Inferring resting-state connectivity patterns from functional magnetic resonance imaging (fMRI) data is a challenging task for any analytical technique. In this paper, we review a probabilistic independent component analysis (PICA) approach, optimized for the analysis of fMRI data, and discuss the role which this exploratory technique can take in scientific investigations into the structure of these effects. We apply PICA to fMRI data acquired at rest, in order to characterize the spatio-temporal structure of such data, and demonstrate that this is an effective and robust tool for the identification of low-frequency resting-state patterns from data acquired at various different spatial and temporal resolutions. We show that these networks exhibit high spatial consistency across subjects and closely resemble discrete cortical functional networks such as visual cortical areas or sensory–motor cortex.

Footnotes

  • One contribution of 21 to a Theme Issue ‘Multimodal neuroimaging of brain connectivity’.

    View Full Text

    Log in through your institution