Skip to main content
  • Other Publications
    • Philosophical Transactions B
    • Proceedings B
    • Biology Letters
    • Open Biology
    • Philosophical Transactions A
    • Proceedings A
    • Royal Society Open Science
    • Interface
    • Interface Focus
    • Notes and Records
    • Biographical Memoirs

Advanced

  • Home
  • Content
    • Latest issue
    • Forthcoming
    • All content
    • Subject collections
    • Videos
  • Information for
    • Authors
    • Guest editors
    • Reviewers
    • Readers
    • Institutions
  • About us
    • About the journal
    • Editorial board
    • Policies
    • Citation metrics
    • Open access
  • Sign up
    • Subscribe
    • eTOC alerts
    • Keyword alerts
    • RSS feeds
    • Newsletters
    • Request a free trial
  • Propose an issue
You have accessRestricted access

Protein hydration dynamics in solution: a critical survey

Bertil Halle
Published 29 August 2004.DOI: 10.1098/rstb.2004.1499
Bertil Halle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The properties of water in biological systems have been studied for well over a century by a wide range of physical techniques, but progress has been slow and erratic. Protein hydration—the perturbation of water structure and dynamics by the protein surface—has been a particularly rich source of controversy and confusion. Our aim here is to critically examine central concepts in the description of protein hydration, and to assess the experimental basis for the current view of protein hydration, with the focus on dynamic aspects. Recent oxygen–17 magnetic relaxation dispersion (MRD) experiments have shown that the vast majority of water molecules in the protein hydration layer suffer a mere twofold dynamic retardation compared with bulk water. The high mobility of hydration water ensures that all thermally activated processes at the protein–water interface, such as binding, recognition and catalysis, can proceed at high rates. The MRD–derived picture of a highly mobile hydration layer is consistent with recent molecular dynamics simulations, but is incompatible with results deduced from intermolecular nuclear Overhauser effect spectroscopy, dielectric relaxation and fluorescence spectroscopy. It is also inconsistent with the common view of hydration effects on protein hydrodynamics. Here, we show how these discrepancies can be resolved.

Royal Society Login

Sign in for Fellows of the Royal Society

Fellows: please access the online journals via the Fellows’ Room

Not a subscriber? Request a free trial

Log in using your username and password

Enter your Philosophical Transactions of the Royal Society B: Biological Sciences username.
Enter the password that accompanies your username.
Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.

Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.

Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.

PreviousNext
Back to top
PreviousNext
29 August 2004
Volume 359, issue 1448
  • Table of Contents
Discussion Meeting Issue ‘The molecular basis of life: is life possible without water?’ organized by R. M. Daniel, J. L. Finney and M. Stoneham
Share
Protein hydration dynamics in solution: a critical survey
Bertil Halle
Phil. Trans. R. Soc. Lond. B 2004 359 1207-1224; DOI: 10.1098/rstb.2004.1499. Published 29 August 2004
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Email

Thank you for your interest in spreading the word on Philosophical Transactions of the Royal Society B: Biological Sciences.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Protein hydration dynamics in solution: a critical survey
(Your Name) has sent you a message from Philosophical Transactions of the Royal Society B: Biological Sciences
(Your Name) thought you would like to see the Philosophical Transactions of the Royal Society B: Biological Sciences web site.
Print
Manage alerts

Please log in to add an alert for this article.

Sign In to Email Alerts with your Email Address
Citation tools

Protein hydration dynamics in solution: a critical survey

Bertil Halle
Phil. Trans. R. Soc. Lond. B 2004 359 1207-1224; DOI: 10.1098/rstb.2004.1499. Published 29 August 2004

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Article reuse

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related articles

Cited by

Print issues available for purchase

Open biology

  • PHILOSOPHICAL TRANSACTIONS B
    • About this journal
    • Contact information
    • Purchasing information
    • Propose an issue
    • Open access membership
    • Recommend to your library
    • FAQ
    • Help

Royal society publishing

  • ROYAL SOCIETY PUBLISHING
    • Our journals
    • Open access
    • Publishing policies
    • Conferences
    • Podcasts
    • News
    • Blog
    • Manage your account
    • Terms & conditions
    • Cookies

The royal society

  • THE ROYAL SOCIETY
    • About us
    • Contact us
    • Fellows
    • Events
    • Grants, schemes & awards
    • Topics & policy
    • Collections
    • Venue hire
1471-2970

Copyright © 2018 The Royal Society