The Structure of the Nervous System of the Nematode Caenorhabditis elegans

J. G. White, E. Southgate, J. N. Thomson, S. Brenner

Abstract

The structure and connectivity of the nervous system of the nematode Caenorhabditis elegans has been deduced from reconstructions of electron micrographs of serial sections. The hermaphrodite nervous system has a total complement of 302 neurons, which are arranged in an essentially invariant structure. Neurons with similar morphologies and connectivities have been grouped together into classes; there are 118 such classes. Neurons have simple morphologies with few, if any, branches. Processes from neurons run in defined positions within bundles of parallel processes, synaptic connections being made en passant. Process bundles are arranged longitudinally and circumferentially and are often adjacent to ridges of hypodermis. Neurons are generally highly locally connected, making synaptic connections with many of their neighbours. Muscle cells have arms that run out to process bundles containing motoneuron axons. Here they receive their synaptic input in defined regions along the surface of the bundles, where motoneuron axons reside. Most of the morphologically identifiable synaptic connections in a typical animal are described. These consist of about 5000 chemical synapses, 2000 neuromuscular junctions and 600 gap junctions.

Royal Society Login

List of OpenAthens registered sites, including contact details.